
Cryptography Session:

”How Crypto Gets Broken (by you)”

1

A bo u t Me

▪ Cybersecurity Research Engineer @ NMFTA

▪ Attack Tree Fanatic

▪ Enjoys CTFs (maybe a little too much)

▪ Enjoys Teaching

▪ >10 years of professional experience in

embedded systems design

▪ Masters of Engineering in Applied Math & Stats

from Queen's University.

▪ Member of and contributor to SAE

TEVEES18A1 Cybersecurity Assurance Testing

TF (drafting J3061-2)

linkedin.com/in/Ben0L0Gardiner

github.com/BenGardiner

ben.gardiner@irdeto.com

@BenLGardiner

Special Thanks to:

Jonathan Beverley & Colin deWinter

3

4

Agenda

 We will break regularly for questions at section breaks

 But also feel free to ask questions anytime

 Much material from the following reference (i.e. buy this book):

Anderson, Ross. Security engineering. John Wiley & Sons, 2008.

Challenge: Decrypt ‘Crypto’ 1

Building Blocks 10

Challenge: Break Hashes 10

↘Attacking Building Blocks 10

Challenge: Break Crypto 10

↘(More) Attacking Building Blocks 5

Protocols 5

↘Attacking Protocols 5

56 mins

5

‘ C r yp to ’

Crypto Building Blocks

6

Encryption

 Encryption – an encoding which can be reversed (given a key)

 A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E) using a

key (K)

E = {M}K

 Decryption is possible with the cipher, the ciphertext, and the key

 e.g. AES, RSA, ECC, 3DES, …

 not encryption: base64 (e.g. ZS5nLiB0aGlzIGJhbG9uZXkgcmlnaHQgaGVyZQ==)

Ha nd s -O n : 6 0 s Cha l l enge

’Decrypt’ these (you’re actually decoding):

V2VsY29tZSB0byBjeWJlcnRydWNr

V2VsY29tZSB0byBjeWJlcnRydWNrIQ==

8

These are base64 encoded (not encrypted).

This might seem obvious to some – but it is not uncommon to

encounter base64 ‘encryption’ in the wild.

Here’s a handy set of tools for this: http://rumkin.com/tools/
Also command-line: base64 (remember to echo –n)

http://rumkin.com/tools/

Hashes
 (Cryptographic) Hashes – not an encoding & not reversible

 Different than the larger, general class of hash functions

 For a cryptographic hash function f:
given f(x) -- you can’t find / guess / calculate x

 e.g. you can’t find what made
3947cdf52a551de4983746545a1affdb2b04f4a2or
21232f297a57a5a743894a0e4a801fc3 (actually, this one is easy)

 aka One-way Functions

 aka Random Functions

 aka Shortcut Functions

 aka One-way Compression Functions

 aka Digests

 e.g. SHA-1, SHA-256, BLAKE, …

 not a cryptographic hash: MD5

10

‘Classic’ & Modern Crypto
 ’Classic’ Crypto

 Mostly pre-20th century

 Deals with alphabets: input & output

 e.g. shift cipher (Cesar cipher)
irel fuvsgl

 also e.g. substitution cipher, polyalphabetic substitutions, transpositions etc.

 It is still encryption – the ‘key’ is the knowledge of the mapping (shift, letter-map
etc.)

 Relevance today: puzzles, challenges and easy reverse engineering

 Modern Crypto

 Deals with numbers: input & output

 Text is treated as numbers via encodings – ASCII or UTF-8 is the most likely encoding
e.g. CE6B02C8CDD27C50C8C9459517DF1E5EBD1FBB14DF554D5FC1FE647DBDCAE881

By Matt_Crypto - http://en.wikipedia.org/wiki/File:Caesar3.png, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=30693472

11

Stream Ciphers

 One-Time Pad (OTP) – the only proven secure encryption scheme

 Uses random key-stream, of length equal to or greater than the message

 Then combine key-stream with message (assume XOR)

 Stream Ciphers – approximate the OTP

 Expand short key into pseudo-random keystream

 Then XOR

 e.g. RC4, Salsa20, FISH

 IV – initialization vector, usually does not need to be secret

Di Kyle Siehl - Self-made, based on raster w:Image:Wep-crypt.png, which was taken with permission from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1806804

12

Block Ciphers

 Block Ciphers – different approach

 Uses a key and fixed-length inputs (blocks)

 Combined with previous outputs and more fixed-length inputs in various modes:

 ECB, CBC, PCBC, CFB, OFB, CTR … GCM(!)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434116 By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434096

13

Symmetric / Asymmetric Crypto
 Symmetric Crypto – can be encrypted + decrypted by any party with the key

 e.g. any of the crypto we’ve discussed so far

 Asymmetric Crypto – can be encrypted by any party for a specific recipient

 aka public-key cryptography

 Leverages certain problems that are hard in one way & easy in the other: prime

factorization and discrete logarithms

 Keys exist as pairs of public & private halves -- key-pairs

 The party with the private key can decrypt & sign (more on signatures later)

 Any parties with the public key can encrypt & verify

 e.g. RSA, ECC

 e.g.
-----BEGIN RSA PRIVATE KEY-----
izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJgCQuuvT+qZI
…

Crypto Building Blocks

Section Summary

 Encryption… it hides information, binds it – protects confidentiality, but not integrity (without

additional effort)

 E = {M}K

 (Crypto) Hashes – one-way functions. With f(x) you cannot get x

 ’Classic’ Crypto – involves substituting alphabets: rotation or re-mapping (we’re over-

simplifying – there’s only 50 minutes here)

 Stream Cipher – combine a sequence of key bits with a sequence of cleartext bits with XOR

(or effectively XOR)

 Block Ciphers – have a limited key sequence, but extend to larger cleartext sequences

 Not all block cipher modes are created equal (e.g. Electronic Coloring Book (ECB))

 Symmetric Crypto – all parties share the same key

 Asymmetric Crypto – only one party has the decryption key (private key)

Attacks on Building Blocks

15

Attacking Hashes
 Google.

 Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

 Identifying what type of hash it is will be useful – the length gives it away

 If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector

 Hash Crack sites: esp. crackstation

 hashcat

 (ab)uses your GPU for rapid hash cracking

17

Cooler Attacks on Hashes
 Hash-Length Extension Attacks

 Take a known H(‘start’) and add to it to

get: H(‘start’ + junk)

 Get to a known identical hash for ‘start’

and ‘start’ + junk

 Taking Advantage of File Formats

 PDF has lots of place to hide

information

 See Ange Albertini’s work on PDF

polyglots

 This can be leveraged to create PDFs

with the same SHA-1

 https://shattered.io/

https://shattered.io/

18

Typical Hash Defense
 Salts

 Because it’s pretty easy to lookup or build a table of known inputs for hashes;

designers tend to follow the best practice of ’salting’ their inputs

 D033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)

 3947cdf52a551de4983746545a1affdb2b04f4a2 = SHA1(‘saltadmin’)

 Salts are usually pre-prepended onto the input; sometimes with a separator like

‘.’ or ’+’

 hashcat can find a salt for a given hash + input pair.

 hashcat can also find inputs for hashes with a given salt as a parameter.

 Find the salt with one known hash first.

 OR find the salt with research (some systems’ password salts are well-known)

19

Still More on Attacking Hashes
 Password lists

 Brute-forcing (all possible character combinations) for inputs to hashes is

possible

 ‘password lists’ are more useful. There are hundreds of these to choose from,

most from data breaches over the past years.

 In CTFs the rockyou list is the most common – for applied hash cracking YMMV.

 This is more generally applicable as a dictionary attack

20

Hands On: 10 Minute Challenge

 Reverse these hashes:

 5f4dcc3b5aa765d61d8327deb882cf99

 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

We’ve mentioned the tools you need for this.

Attacking ‘Classic’ Crypto

 Historically, frequency analysis was the undoing of classic crypto

Letter use in a language (e.g. English) has a predictable # occurrences

(frequency)

Count the # of occurrences of a symbol in ciphertext; match to expected

rate in language

Requires medium-large ciphertext for analysis to work

 Today (challenges/puzzles/RE):

Try shift ciphers (start with ROT13)

Then try a substitution cipher

Then have ‘fun’ : http://rumkin.com/tools/cipher/

http://rumkin.com/tools/cipher/

22

Classic Crypto Attack Example
Ploregehpx 2018 sbe gur jva!
N uhtr gunax lbh arrqf gb tb bhg gb bhe fcbafbef. Guvf ceb-vaqhfgel rirag
qrcraqf ba npgvir fcbafbe vaibyirzrag naq fhccbeg.

 E->B? E->A ? E->R ?

 Try them all: http://rumkin.com/tools/cipher/caesar.php

 Shift 13 (aka ROT-13):

 Cybertruck 2018 for the win! A huge thank you needs to go out to our sponsors.
This pro-industry event depends on active sponsor involvement and support.

http://rumkin.com/tools/cipher/caesar.php

23

Stream Cipher Attacks

 Re-used Key Attack

Recall: it’s all about XOR (^)

 If I know A^B and I know A or B, I can get the other

Anytime a stream cipher re-uses keys, it’s a problem

 if I have E1 = A^K and E2 = B^K I can get A^B

 this is a big deal if:

A, B are natural language or if

A, B are different lengths or if

we can control A or B

24

Block Cipher Attacks
 Getting impractical now…

 Goals: forgery or key-recovery

 Block Cipher Attack Models

 known plaintext: attacker is given a set of pair of cleartext+ciphertext

 chosen plaintext: attacker has the ability to query cleartext and receive

ciphertext

 chosen ciphertext: attacker has the ability to query ciphertext and receive

cleartext

 chosen plaintext/ciphertext: attacker has the ability to query either

 related key: attacker has the ability to query with key related to specified key,

K (e.g. K+1 K+2, ...)

25

Padding Oracle Attacks

 An example chosen ciphertext attack:

 Padding oracle attack: attacker supplies ciphertext, detects ‘incorrect

padding’ error conditions – can use this oracle to ultimately decrypt

messages

 Surprisingly common

26

Cryptanalysis and More

 Linear Cryptanalysis

 solving for linear relationships between cleartext (input) and ciphertext (outputs)

 at fractional likelihoods

 using the likelihoods to sometimes predict ciphertext from cleartext

 'correct' crypto is designed to resist these attacks

 Differential Cryptanalysis

 solving for sensitivity relationships of changes to cleartext bits (input) onto ciphertext bits
(outputs)

 at fractional likelihoods

 then use any high likelihoods to guide attacks with chose inputs

 Modern ‘correct’ crypto is design to resist these attacks too

 Other Cool Stuff: Slide Attack, XSL Attack, Impossible Differential, Boomerang, ...

27

Reality Check
 We talked about attack models & attack goals; some families of attacks

 No simple attacks after ‘Classic’ crypto

 Few practical attacks

 Attacking Crypto these ways is hard, for ’correct’ crypto:

 e.g. SHA-256, AES-128, RSA-2048, ECC

 For incorrect crypto (e.g. anything else)

 Is it XOR ‘Crypto’? Then try XOR ciphertexts together; try XORing it with good guesses too

 OR Are there repetitions of data patterns in the ciphertext? Maybe it is ECB mode or maybe it is key-reuse in a stream

cipher

 OR If you know the name of the crypto, use google – maybe you will find tool or PoC to break it

 Otherwise, you might only know it is probably broken (unless you write the tools yourself)

 But it’s not impossible

 People build protocols out of these building blocks – protocols get broken more often

 (and don’t forget side-channel attacks and software exploitation)

28

Hands-On: 10 Minute Challenge

 Decipher the following strings:

Lqydolg#Sdvvzrug$ Sdvvzrug#RN$$$#=,

Hints::

• from the IOLI crackme challenges: pof.eslack.org/tmp/IOLI-crackme.tar.gz

• ‘Sdvvzrug’ shows up in both strings, this tells you something

• ‘#’ is 0x35 and ‘$’ is 0x36

• ‘ ’ is 0x32 and ‘!’ is 0x33

• rumkin.com/tools/cipher/caesar.php

Done? Already? Do a ‘beginner’ challenge at potatopla.net/crypto/

Other Attacks on Block Ciphers

 Not all block modes are equal

 Definitely not ECB

 Recognizing ciphertext blocks can let you decrypt

them: maybe not to their contents, but to their

meaning

 Sometimes also their contents; e.g. infer all-zeroes

input.

 Visualization tools: vix, radare2, binvis.io, Veles

https://github.com/pakesson/diy-ecb-penguin

=AES_ECB()

http://binvis.io/#/

30

Other Attacking Building Blocks

 Software Exploitation can yield both control of the software and also information

leaks

 Access to process memory can be fruitful key extraction attacks

 Multiple tools are available to scour memory for keys: aeskeyfind, radare2,

volatility

 Reverse engineering of the program code in memory can yield pointers to the

memory locations of keys

 Infoleak vulnerabilities are not uncommon

 c.f. Heartbleed

Section Summary
 Hash Attacks – collisions, pre-image etc. use google. All other practical (for us mortals) attacks are in hashcat,

use it.

 Classic Crypto Attacks – frequency analysis (there are others specific to the crypto, YMMV). Try simple things
first, use cryptogram tools

 Stream Cipher Attack – Reused Key Attack. Try XORing things….

 Block Cipher Attack Models – known plaintext, chosen plaintext,
chosen ciphertext, chosen plaintext/ciphertext, related key,
padding oracle

 Block Cipher Attack Goals – forgery or key-recovery

 Block Cipher Attacks – Linear Cryptanalysis, Differential Cryptanalysis
(others: Slide, XSL, …)

 ECB Attack – recognize patterns

 Don’t forget about software exploitation; in-memory attacks.

 Breaking protocols is more fruitful (next sections)

 Cryptogram tools: http://rumkin.com/tools/cipher/

 Visualization tools: binwalk -E, radare2, binvis.io, Veles

http://rumkin.com/tools/cipher/
http://binvis.io/#/

Protocols

32

Protocols

 Protocols – the rules that govern the communication between parties

 What information is transmitted from party A to party B?

 What steps must party B perform?

 What information must be sent in reply (if any)?

 etc.

34

Protocol: Simple Authentication

 Simple Authentication:

 Source: wants to be authenticated by the target

 Target: decides if source is authentic

 The source sends to the target:

 its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key (KT)

that could be specific to the ID and also is known to the target.

 The target looks-up encryption key KT for ID T; decrypts the {…}KT and checks the nonce N hasn’t been

seen before.

 Nonce : Number used ONCE

 E.g. older keyfobs / garage door openers – source is the fob, target is the car or garage door.

source target

T|{T|N}KT

Protocol: Message Authentication Codes (MAC)

 Message Authentication Codes: for a message: create a value that can enable the message to be
verified by any party with the shared key -- the same shared key is used to create the value.

 e.g. CBC-MAC – build a MAC with CBC chaining mode of a block cipher

 e.g. CMAC – also uses a block cipher

 e.g. HMAC – build a mac with a hash function

 E.g. CBC-MAC-AES128, HMAC-SHA1, etc.

 Parties receiving messages that don’t verify against the key (shared in this case) shall discard
messages

 How the shared keys are distributed and how messages are discarded is additional protocol
details (for the next layer of the protocol specification)

 aka Message Integrity Code (MIC)

 aka protected checksums

 Not a MAC: a message digest: f(M) where f is a hash function.

Protocol: Digital Signatures
 Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to

be verified by any party with the public key, but cannot be created by any party without the private key.

 a signing party with a private key can create a signature

 parties with the public key can verify that signature

 e.g. DSA, ECDSA. Let’s consider a simple, older RSA signing:

 Send message, M, and signature together

M|{H(M)}k

 To verify: Decrypt {H(M)}k and assert it is equal to H(M)

 Where H is a cryptographic hash and k is the RSA private key

 In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

 How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

 E.g. what if you sent: K|M|{H(M)}k where K is the public key?

37

Protocol: Challenge-Response (in General)
 Source wants to be authenticated by the target

 Source receives a nonce as challenge

 Transforms it and replies as response

 An ideal C-R would make it impractical for an attacker to guess the secret by observing traffic of
multiple C-R exchanges.

 Attacker sees both challenge and response: known plaintext attack

source target

=

Ready

Challenge: N

Response: f(N)

PASS / FAIL

f(・)f(・)

rand()

Crypto Crypto

P ro toco l s
Sec t ion Summary

 Protocols – the rules that govern the communications between parties

 Digital Signatures – can be created by parties with the private key but verified by anyone

with the public key (built from asymmetric crypto)

 Message Authentication Codes (MAC) – can be created and verified by any party with the key

(can be built from symmetric crypto)

 Nonce “number used once” – can be random or a counter …

 Simple Authentication – source send its ID and an encrypted ID, nonce pair to a target for

verification

 Challenge Response – target sends nonce to source; source replies with some proof that it

has an ID known to the target

 E.g. nonce encrypted with key known to source

 E.g. nonce transformed with parameters known to source

Attacks on Protocols

39

Attacks on Protocols

 Generally: try to break the assumptions of the protocol

 This actually generalizes to “How to attack any specification”:

Anywhere the specification says SHALL/SHOULD – see what happens

when it doesn’t…

Attacks on Simple Authentication

 Simple Authentication assumes nonce N hasn’t been seen before

 If the nonce is random:

 Does it actually check? Send again (Replay Attack)

 How many nonces does it store? Send +1 (Valet Attack)

 If the nonce is a counter:

 How does it resynchronize? Try sending counter guesses (Bad counter resync attack)

 Simple Authentication assumes that the key KT is associated with the ID T and

 Are there other T that could associate with KT? Try sending to other target (Key collision

attack)

42

Attacks on MAC

 For digests

 Recall: these aren’t actually MACs – but they get used that way occasionally

 Recall: you will know the input, i.e. you will have at least one digest:message pair

 You need to identify digest algorithm – length usually gives it away; also see tools like
cothan/hashdetector

 You may need to identify the salt also – hashcat can do this

 For HMAC- MD5, SHA1, SHA256, SHA512:

 hashcat can crack the key or salt given a hmac:message pair

 Software exploitation, ‘confused deputy’

 Software exploitation could enable control of what messages are sent by a piece of SW
designed to send mac:message pair.

 Is a successful forgery attack unless other software-integrity measures are taken.

43

Attack on Digital Signatures

 Recall the RSA Signature example: Send message, M, and signature together

M|{H(M)}k

 Agreeing on the K public key for the k private key is a critical part.

 What if you sent?

K|M|{H(M)}k

 Then an attack is to use your own private/public key pair a/A and send:

A|M|{H(M)}a

 Watch out for this broken protocol (sending the pubkey). It happens sometimes…

 More generally: try to find ways to substitute the expected public key K for your
key, A

 Stored in flash somewhere?

44

Attack on Challenge-Response

Middleperson Attack (in General)
 Interposing an actor in-between the source and target

 Enables tampering with the contents, ordering, timing etc.

 Good framework for attacks on specific Challenge-Response protocols

 Definitely applicable in TLS/SSL attacks with physical access

 Can be effectively achieved without physical interposition if messages can be selectively denied.

source target

=

f(・)f(・)

rand()

Attacks on Protocols

Section Summary

 Attacks on protocols are more fruitful than attacks on building blocks

 Simple Authentication Attacks

 Key Collisions – e.g. 16bit serial number used as input to key

 Key Extraction and Extension – e.g. Keeloq

 Replay Attack – capture one or more, replay selectively

 Valet Attack – capture a large set during temporary but extended possession

 Bad Counter Resynchronization – depends on resync behavior of protocol

 MAC

 Digests. Hash breaking HMACs

 Digital Signature Attacks

 Pubkey substitution

 Challenge-Response Attacks

 Middleperson Attack – interpose and relay to/from target/source

 (and more coming up in later section)

Closing

46

Summary

 ’Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

 ’Crypto is hard’ → means if you only have packet captures then correct crypto is hard to

break

 Crypto building blocks don’t get broken very often (given only the capture of comms)

 Crypto protocols get broken

 Crypto gets broken via side-channels

 Crypto gets broken by compromise of execution environment

 Applied Attacks (exercise for the ‘reader’):

 You can middleperson-attack TLS/SSL

 You can lift/reverse/solve/brute-force Seed-Key Exchange

48

Resources for Continued Learning

• Cryptopals (CTF), T. Ptacek et. al.

• Let’s Play with Crypto (Pres.), Ange Albertini

• Security Engineering (Book), Ross Anderson

• POC||GTFO (Journal), mirror

• PotatoSec Crypto Puzzle Challenges

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://www.alchemistowl.org/pocorgtfo/
https://www.potatopla.net/crypto/

For Reference
Not covered in the training due to time constraints

49

50

Aside: Entropy Visualization

 Entropy (in the sense of C. Shannon) is a metric of information-density in message/value/bit-

sequence

 It turns out (thanks also to Shannon) that information is maximized when the likelihood of

1/0 are equal

 i.e. ‘completely random’ IS highest entropy.

 The entropy of a bitsequence can be estimated

 Estimated entropy approaches 1.0 for random number sequences

 Next is ‘correct’ crypto

 Then compression

 Estimated entropy is not high for other data (structured data)

51

Aside: Entropy Visualization (cont’d)

 The entropy estimates can be broken-up over a large input and visualized

 You can identify and distinguish between

encrypted (correct) content

Other encrypted (incorrect) content

Compressed content

 Rules of thumb:

Compression looks like pretty high entropy

Encryption looks like really high entropy

52

Aside: Entropy Visualization (cont’d)

AES ECB AES CBC

Image

binvis.io

entropy

binwalk

53

Hands-On: 15 Minute Challenge

 Use Entropy Visualization (and anything else) to Identify:

1) A compressed file

2) An ECB-mode encrypted file

3) A ‘correct’ encrypted file

 In the set: https://goo.gl/LbzMbE

Use these (or any other tools):

• http://binvis.io
• binwalk –E
• Veles

• radare2

• hex editors

I corrupted the headers to break file magic

http://binvis.io/

Protocol: WPA2

WPA2

 Wi-Fi Protected Access II

 Wi-Fi confidentiality measure

 Supersedes WEP (which was a very broken protocol)

 WPA2-Personal (-PSK)

 uses a pre-shared key.

 Each client (supplicant in WPA-speak) gets its own session key

 Setup of the key is visible at different levels.

 WPA2-Enterprise

 Enables authentication of the Access-point

 All communication with the Access-point is can be done with individualized keys

 Let’s discuss WPA2-Personal

WPA2 Handshake

 4-way handshake

 A nonce

 Then another nonce with MAC

 Then a global key with MAC

 Then an ACK

 Grossly over-simplified on the left

Supplicant

(client)
Access

point

Key (& MAC)

Ack

Client starts

using (installs)

session key

here.

Nonce (& MAC)

Nonce

57

Attacks on WPA2

 There is a MAC, implemented as a HMAC which is sent by supplicants and derived from the

pre-shared key

 Hash attacks to reverse this

 There are advantages to having observed multiple nonce & MAC -- so the attack starts with

causing the target to deauthorize from the Wi-Fi (repeatedly)

 hashcat can co the cracking, but not the de-auth

 airocrack-ng can do both

58

Attacks on WPA2 (cont’d)

 There is a key reuse vulnerability in some client

software, dubbed KRACK

 When the key is ‘installed’, the client resets its

communication counters

 By replaying message 3 in the handshake, counters

can be reset repeatedly – key reuse attack

 Some systems were even vulnerable to installing a

null-key by sending a tampered 3rd message

 Fun-fact: WPA2 had been formally-proven secure.

 The spec of the formal proof did not include ”keys

must be ‘installed’ once and only once”

Ack

Nonce (& MAC)

Nonce

0x00…00(& MAC)

Ack

Nonce (& MAC)

Nonce

Key (& MAC)

Key (& MAC)

https://www.krackattacks.com/

https://www.krackattacks.com/

59

Hands-On: 1 Minute Challenge

 Capture as many users of the Cybertruck Wi-Fi as you can in 1 minute.

I’m kidding – please don’t attack the Wi-Fi. I’m using

it.

• KRACK is unnecessary – your systems all know the WPA2 password already

(it is a pre-shared key)

• How this would work :

• ’de-auth’ other clients so you could witness their handshake with the

Access Point.

• At which point you would have their session key and could decrypt all

their traffic.

60

Protocol: WPA2

Section Summary

 WPA2 Passwords can be cracked, indirectly, via the hashes exposed in the

handshake

 The process is accelerated by capturing multiple 4-way handshakes, so the

attack usually also includes a flood of de-authenticating the clients

 WPA2 keys can be reinstalled (KRACK)

 Re-installing a key resets counters – this gives a key reuse attack

 Sometimes WPA2 keys can be nulled (KRACK)

 known-key attack

 These attacks on Wi-Fi require clients are connected

Protocol:

TLS / SSL

61

TLS / SSL
 Transport Layer Security (TLS). Was SSL, now that name is deprecated

 Used in HTTPS – but can be found without HTTP

 Provides both confidentiality and authentication of endpoints

 typically client authenticates server

 Sometimes server also authenticates client -- we’re not going cover this

?

…

…
connect

certificate

63

Certificates?
 Chains of Digital Signatures (asymmetric crypto)

 Recall: only the owner of the private part of a public key-pair can:

 decrypt traffic encrypted to the public key

 create a signature verifiable by anyone with the public key

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46369922

64

How Clients Are Supposed to Authenticate Servers

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46369922

Trust

Store

65

Client Implementations of Server Authentication

 The proxies will work out-of-the-box on Type 1 and Type 2

“Type” Trust

Type 1 Trust anything (no SSL/TLS)

Type 2 Trust any valid certificate

Type 3 Trust any root-CA in OS Trust Store

Type 4 Trust only (pin) the pub key of certificate

Type 5 Trust only (pin) the pub key of cert. signer

Type 6 Pinning and Integrity Verification0xc0de

66

Middleperson (aka MiTM) attacks

• HTTP Proxies: mitmproxy, Burp, ZAP, martian

• Non-HTTP: MiTMF, ettercap, bettercap, SSLSplit

• Some require that you setup the proxy as a gateway -- some can work as a sibling

(leveraging ARP poisoning)

67

Certificate Substitution Attacks (on Type 2)
 Proxy creates two TLS connections

 Upstream, client connection to server – normal, valid, nothing to see here

 Downstream, served to client – supplies some other certificate

 Type 2 client sees ‘a cert’ and is happy

?

…

…
connect

certificate

…

…
connect

‘certificate’

Trust Store Attacks (on Type 3)

 Can you add a root certificate authority to the trust store?

 If you have UI access to an Android device the answer is probably yes

 Can you use a compromised root certificate that is already in the trust store?

 There have been several compromised root certificates over the years (Komodo,

Symantec)

 If the devices is old enough, the compromised root certificate might be in its

trust store

 Forge a server certificate signed with the secret from the compromise root;
install that in the proxy (e.g. mitmproxy, Burp, etc.)

 Getting the compromised secret is… the tricky part

69

Types 4-5 Attacks

 Recall: types 4-5 use certificate pining – they will only accept a connection from a server with

a particular expected public key

 If a different public key is supplied they abort connections

 Software Exploitation is the only remote attack

 If you have superuser privileges on the systems executing the type 4-5 code then there are

simple ways to replace the expected pub key or bypass the abort connection response:

 Patch the pubkey from the software

 Runtime hooking: e.g. Universal Android SSL Pinning Bypass with Frida

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

 For Type 6: the runtime integrity checks will prevent most patches, hooks and exploits.

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

70

Other Attacks (on all types)

 SWEET32 – monitor long-lived Triple-DES and recover cookies

 DROWN – break confidentiality of some TLS (downgrade)

 Logjam – break confidentiality and integrity of some TLS (downgrade)

 POODLE – break confidentiality and integrity of some TLS (downgrade)

 Not very practical – only PoCs available : poodle-PoC , Tim---/drown , drownAttackDemo

 There are even passive differential cryptanalysis attacks – working only at large-scale and
long time periods

 Recover a RSA private key from a TLS Session with Perfect Forward Secrecy – Marco Ortisi

 Other other attacks (not confidentiality or integrity compromising):

 Heartbleed – exploit memory leak in some OpenSSL versions to view 64K of server memory
(in theory could yield a server secret)

Protocol: TLS / SSL

Section Summary

 TLS (SSL is deprecated) sets up a channel with confidentiality and authentication

 Confidentiality is established with key-exchange

 Authentication is established with certificate chain verification – the chain ultimately ending in an authority in a trust store of the
endpoint

 TLS/SSL middleperson attacks require a network interposition and include:

 Abuse of endpoints not checking certificate chains

 Abuse of trust-stores – adding new authorities into them, or convincing users to do it

 (rare) crypto breaks to obtain session or master keys

 (less rare) forced downgrade to TLS/SSL version with publicly broken crypto

 Other TLS/SSL Attacks (some are aforementioned rare crypto breaks):

 SWEET32, DROWN, logjam, POODLE, Heartbleed

 Tools:

 mitmproxy, Burp, ZAP, MITMf

 poodle-PoC , Tim---/drown , drownAttackDemo

Protocol: UDS Seed-Key Exchange

72

73

UDS

 Unified Diagnostic Services – ISO 14229 ; on CAN: ISO 15765

 Used for nearly ALL vehicle Diagnostic Protocols

 You will learn a lot about it in other sessions today and tomorrow

 There are actions in UDS that are protected. To execute the action requires authorization:

e.g.

 Read memory

 Reflash ECUs

 Perform potentially dangerous maintenance operations

 Aka ‘the fun stuff’

74

UDS Authorization

 Sometimes UDS is helpful; it will tell you that you need to authorize

 Negative Response Code : SecurityAccessDenied

 You’ll learn about these

 To authorize; unlock the current session with SecurityAccess Seed-Key Exchange

 Session holder / server emits a seed; session user / client returns a key

 0x27 (replies on 0x67)

 Subfunction 0x05 for requestSeed / 0x06 for sendKey

 You’ll know more about these soon

75

Seed-Key Exchange (C-R in UDS)

 Seed-key exchange is a Challenge-Response protocol

 Only 16-bit space; so it might not fit our ideal characteristics of resisting known plaintext

forgery attacks

 The seed here is a challenge and the key here is a response

75

Diag

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

76

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

Line Abs Time(Sec)PT B1 B2 B3 B4 B5 B6 B7 B8

5836 63.73227 18DA00F1 2 10 3 0 0 0 0 0

5839 63.74426 18DAF100 6 50 3 0 14 0 C8 0F

6406 64.72396 18DA00F1 3 22 F1 0 0 0 0 0

6412 64.74421 18DAF100 7 62 F1 0 2 1 0E 3

7043 65.8583 18DA00F1 2 27 5 0 0 0 0 0

7050 65.874 18DAF100 4 67 5 81 B7 1 0E 3

7625 66.88428 18DA00F1 4 27 6 16 98 0 0 0

7639 66.904 18DAF100 2 67 6 81 B7 1 0E 3

8252 67.96437 18DA00F1 10 0D 2E F1 5C 0 0 0
Daily J., COMVEC15, A Digital Forensics Perspective …

77

Attacking Seed-Key Exchange

 Attack Goals:

a) Get a security session (small-scale)

b) ‘Pirate’ a security session (large-scale)

For a):

If you have diagnostic SW:

• Use a middleperson attack

If you don’t:

• Then it is equivalent to pirating a session (c.f. next)

78

b) Pirating it…

1.0 'Pirate’

a SecuritySession

(0x27)

AND

Obtain Diag SW (3.0)

OR

4.0 LUT extraction

4.1 RE algorithm and params
from Diag SW

AND

Obtain ECU FW (3.2)

3.3 RE algorithm and
params from ECU FW

AND

Obtain captures of 0x27
(3.4)

OR

4.2 Solve for unknowns in a
know formula

4.3 Retry seeds until repeated
from capture

2.3 Brute-force

2.4 Glitch past the
check

79

Look Up Table (LUT) Extraction (4.0)

16-bit seed-key exchange means a 128KiB LUT.

 Great example by John Maag of how to lift a challenge-response routine.

 “

• Impersonate brake module using previously logged exchanges

 Specifically, respond over CAN to software requests how the module would

• Give brake software all possible seeds and record the corresponding keys

 “

John Maag, NMFTA HVCS Nov 2017

80

Reverse Engineering the

Algorithm & Key from

Maintenance SW (4.1)

 Use a decompiler or disassembler to

identify the code responsible for

computing the key sent in response

to a seed

Daily J., COMVEC15, A Digital Forensics Perspective …

81

’Brute-Force’ (2.3)

 If you have no diagnostic SW, you can’t lift the correct

algorithm through LUT or RE.

 You can try every possible 16-bit value for each seed

received.

 Worst case is16bit x 16bit (700 weeks at 10 requests per

second)

 But many seed generators won’t cover all 16bits

 Can you control the seed? (e.g. hard-reset)

 single seed: (110 minutes at 10 requests per second)

Daily J., COMVEC15, A Digital Forensics Perspective …

82

‘C r yp to ’

83

Solve for Unknown Constants in a Known

Algorithm (4.2)
 If you have diagnostic software for a related ECU

 and access to ~10 captures of seed-key exchange

 Solve for unknown constants in known formula.

https://www.enigmatos.com/2018/03/14/hacking-cars-with-z3-2/

84

Glitch Past (2.4)

 If you have no diagnostic SW…

 If you can setup low-jitter triggering based on key reply CAN frame

 You can try glitching the module at delays from that trigger.

 Maybe use simple power analysis to refine the delay

 Large search space; tricky setup (removing caps etc.)

 c.f. Riscure’s recent work on demoing this at RSA/CHV

sendKey (0x06)
frame on CAN Bus

CAN Controller of
ECU Receives

sendKey (0x06)

ECU Receives
sendKey (0x06)

ECU compares key
to expected

ECU Unlocks
Security Session

(or not)

Observable

/ Trigger

85

Protocol: Seed-Key Exchange

Section Summary

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

 SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

 If you have diagnostic software:

 Reverse the key algorithm & parameters from PC software

 Black-box / Lift the key algorithm & parameters

 If you have ECU firmware:

 Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

 If you have some captures of successful SecurityAccess:

 Solve for unknowns in a known formula from related ECUs

 Retry seeds until a match occurs with one in the captures

 If you have only the ECU:

 Brute-force (can you control the seed?)

 Get some captures (e.g. service center) – see above

 Glitch past the check – be amazing

