
Cryptography Session:

”How Crypto Gets Broken (by you)”
0x4352415348th Ed.

Cybertruck 2021

1

About Me

❑ Senior Cybersecurity Research Engineer

contractor at NMFTA

❑ Attack Tree Fanatic

❑ Enjoys CTFs (maybe a little too much)

❑ Enjoys Teaching

❑ >10 years of professional experience in

embedded systems design

❑ MSc. Eng. in Applied Math & Stats from

Queen's University

❑ Member of and contributor to SAE

TEVEES18A1 Cybersecurity Assurance

Testing TF (drafting J3061-2) and some ATA

TMC committees

❑ HHV and CHV volunteer

linkedin.com/in/Ben0L0Gardiner

github.com/BenGardiner

@BenLGardiner

Thanks to:

3

@Sagefault + @KennethSalt + Dr. Jeremy Daily

And the CyberTruck Challenge™ Event

previously presented at:

CyberTruck Challenge™ 2018 & 2019 /
HF2020 / NSec 2021

Agenda

❑ We will be taking a brisk pace

❑ But also feel free to ask

questions anytime

❑ Much material from the following

reference:

Anderson, Ross. Security

engineering. John Wiley & Sons,

2008.

❑ Buy this book!

❑ Prev. editions are also free!

www.cl.cam.ac.uk/
~rja14/book.html 4

Challenge: Decrypt ‘Crypto’ 2

Building Blocks 10

↘Attacking Building Blocks 10

Challenge: Break Hashes 5

Protocols 5

↘Attacking Protocols 10

Protocol: UDS Seed-Key Exchange (↘ Attacks) 10

Challenge: Derive the UDS Routines 5

57 mins

Highly compressed. See

UNABRIDGED version in

backmatter for follow-up details.

https://www.cl.cam.ac.uk/~rja14/book.html

5

‘Crypto’

Crypto Building Blocks

6

Encryption

❑ Encryption – an encoding which can be reversed (given a key)

❑ A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E)

using a key (K)

E = {M}K

❑ Decryption is possible with the cipher, the ciphertext, and the key

❑ e.g. AES, RSA, ECC, 3DES, …

❑ Something that’s not encryption: base64 (e.g.
ZS5nLiB0aGlzIGJhbG9uZXkgcmlnaHQgaGVyZQ==)

8

Hands-On: 2 Minute Challenge

’Decrypt’ these (you’re actually decoding):

❑ d2VsY29tZSB0byBIRjIwMjA=

❑ c2VudGluZWw=

These are base64 encoded (not encrypted).

This might seem obvious to some – but it is not uncommon to encounter

base64 ‘encryption’ in the wild.

Here’s a handy set of tools for this:

• http://rumkin.com/tools/

• CyberChef: https://gchq.github.io/CyberChef/
• in python/jupyter: import base64; base64.b64decode('xxx')

http://rumkin.com/tools/
https://gchq.github.io/CyberChef/

Hashes
❑ (Cryptographic) Hashes – not an

encoding & not reversible

❑ Different than the larger, general
class of hash functions

❑ For a crypto. hash function f:
given f(x) you can’t find (guess or
calculate) x

❑ i.e. shouldn’t be able to find input x for:
3947cdf52a551de4983746545a1affdb2b04f4a2 or
21232f297a57a5a743894a0e4a801fc3
(actually, this one is easy)

➢ aka One-way Functions

➢ aka Random Functions

➢ aka Shortcut Functions

➢ aka One-way Compression

Functions

➢ aka Digests

❑ e.g. SHA-1, SHA-256, BLAKE, …

❑ not a cryptographic hash: MD5

10

‘Classic’ vs Modern Crypto
❑ ’Classic’ Crypto

❑ Mostly pre-20th century

❑ Deals with alphabets: input & output

❑ e.g. shift cipher (Cesar cipher)

🔠🔠🔠…🔠🔠🔠 🔀 qbag qrpvcure guvf

❑ e.g. substitution cipher, polyalphabetic substitutions, transpositions etc.

❑ It is still encryption – the ‘key’ is the knowledge of the mapping (shift, letter-
map etc.)

❑ Relevance today: puzzles, challenges and easy reverse engineering

❑ Modern Crypto

❑ Deals with numbers: input & output

❑ Text is treated as numbers via encodings – ASCII or UTF-8 is the most likely
encoding
e.g.
646f6e742064656369706865722074686973 ⨁ (00…10) ➡
646e6c77246163646179626e7e2d7a677962

* Matt_Crypto, wikipedia, Public

Domain

11

Stream Ciphers
❑ One-Time Pad (OTP) – the only proven

secure encryption scheme

❑ Uses random key-stream, of length

equal to or greater than the

message

❑ Then combine key-stream with
message (assume XOR)

❑ Stream Ciphers – approximate the OTP

❑ Expand short key into pseudo-

random keystream

❑ Then XOR (⨁) (^)

❑ e.g. RC4, Salsa20, FISH

❑ note: IV – initialization vector. It shouldn’t

need to be secret

Di Kyle Siehl - Self-made, based on raster w:Image:Wep-crypt.png, which was taken with permission

from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1806804

12

Block Ciphers

❑ Block Ciphers – different approach

❑ Uses a key and fixed-length inputs (blocks)

❑ Combined with previous outputs and more fixed-length inputs in various

modes:

❑ ECB, CBC, PCBC, CFB, OFB, CTR … GCM(!)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434116

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434096

13

Symmetric / Asymmetric Crypto
❑ Symmetric Crypto – can be encrypted + decrypted by any party with the SAME key

❑ e.g. any of the crypto we’ve discussed so far

❑ Asymmetric Crypto – can be encrypted by any party for a specific recipient

❑ aka public-key cryptography

❑ Leverages certain problems that are hard in one way & easy in the other: prime

factorization and discrete logarithms

❑ Keys exist as pairs of public & private halves -- key-pairs

❑ The party with the private key can decrypt & sign (more on signatures later)

❑ Any parties with the public key can encrypt & verify

➢ e.g. RSA, ECC

❑ e.g.
-----BEGIN RSA PRIVATE KEY-----
izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJgCQuuvT+qZI
…

Crypto Building Blocks

Section Summary

❑ Encryption… it hides information, binds it – protects confidentiality, but not integrity
(without additional effort)

E = {M}K

❑ (Crypto) Hashes – one-way functions. With f(x) you cannot get x

❑ ’Classic’ Crypto – involves alphabets not numbers

❑ Stream Cipher – combine a sequence of key bits with a sequence of cleartext bits with
XOR (⨁) (^)

❑ Block Ciphers – have a limited key stream, but extend to larger cleartext sequences

❑ Not all block cipher modes are created equal (e.g. Electronic Coloring Book (ECB))

❑ Symmetric Crypto – all parties share the same key

❑ Asymmetric Crypto – only one party has the decryption key (private key)

Attacks on Building Blocks

15

Attacking Hashes
❑ Google.

❑ Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

❑ Identifying what type of hash you have in-hand will be useful – the length gives it away

❑ If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector

❑ Hash Crack sites

❑ hashcat tool

❑ (ab)uses your GPU for rapid hash cracking

❑ Rainbow Tables

❑ ’halves’ / parts-of hashes pre-built and ready to go

❑ For things like MD5 these are trivial

❑ For things like SHA-256 these are huge (multi-TB)

❑ You can pick-up pre-generated tables at DEFCON Data Duplication Village. Bring a 6 TiB HDD.

❑ And cooler things like hash-length extension attacks

17

More on Attacking Hashes

❑ Salts

❑ Because it’s pretty easy to lookup or build a table of known inputs for

hashes; designers tend to follow the best practice of ’salting’ their inputs

❑D033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)

❑3947cdf52a551de4983746545a1affdb2b04f4a2 = SHA1(‘saltadmin’)

❑ Salts are usually pre-prepended onto the input; sometimes with a separator

like ‘.’ or ’+’

❑ hashcat can find a salt for a given hash and input pair.

❑ hashcat can also find inputs for hashes with a given salt as a parameter.

❑Find the salt with one known hash first.

❑OR find the salt with research (some systems’ password salts are well-known)

18

Still More on Attacking Hashes

❑ Password lists

❑ Brute-forcing (all possible character
combinations) for inputs to hashes is
possible

❑ ‘password lists’ are more useful. There are
hundreds of these to choose from, most
from data breaches over the past years.

❑ In CTFs the rockyou list is the most
common – but for applied hash cracking:
YMMV.

❑ This is more generally known as a
dictionary attack

19

Hands On: 5 Minute Challenge

Reverse these hashes:

❑5f4dcc3b5aa765d61d8327deb882cf99

❑5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

❑ecadec2924e86bf88d622ceb0855382d

❑ff4827739b75d73e08490b3380163658

❑6ce3bb6eb450df7d6345151ec00e4a4e

We’ve mentioned the tools you need for this.

Some are easy. One is not (hint: 2 character salt)

Attacking ‘Classic’ Crypto
❑Historically, frequency analysis was the undoing of classic crypto

❑ Letter use in a language (e.g. English) has a predictable #

occurrences (frequency)

❑ Count the number of occurrences of a symbol in ciphertext; match

to expected rate in language

❑ Requires medium-large ciphertext for analysis to work

❑Today (challenges/puzzles/RE):

❑ Try shift ciphers (start with ROT13)

❑ Then try a substitution cipher

❑ Then have ‘fun’ : http://rumkin.com/tools/cipher/

http://rumkin.com/tools/cipher/

21

Stream Cipher Attacks
❑Re-used Key Attack

❑ Recall: it’s all about XOR (⨁) (^)

❑ If I know A^B and I know A or B, I can get the other

❑ Anytime a stream cipher re-uses keys, it’s a problem

❑ if I have E1 = A^K and E2 = B^K I can get A^B

❑ this is a big deal if:

❑A, B are natural language (use running key cipher attacks on A^B) or if

❑A, B are different lengths or if

❑we can control A or B or if

❑we can make any guesses about A or B

22

Block Cipher Attacks

❑Getting impractical now…

❑Goals: forgery or key-recovery

❑ Block Cipher Attack Models

❑ known plaintext: attacker is given a set of pairs of cleartext+ciphertext

❑ chosen plaintext: attacker has the ability to query cleartext and receive
ciphertext

❑ chosen ciphertext: attacker has the ability to query ciphertext and receive

cleartext

❑ chosen plaintext/ciphertext: attacker has the ability to query either

❑ related key: attacker has the ability to query with key related to specified
key, K (e.g. K+1 K+2, ...)

Other Attacks on Block Ciphers

❑ Recognizing ciphertext blocks can let you
decrypt them:

❑maybe not to their contents, but to their meaning

❑ (Sometimes also their contents; e.g. infer all-zeroes
input)

❑ Use viz tools: vix, radare2, binvis.io, Veles, hobbits

https://github.com/pakesson/diy-ecb-penguin

=AES_ECB()

http://binvis.io/#/

24

Other Attacking Building Blocks
❑ Software Exploitation can yield both control of the software and also

information leaks

❑ Access to process memory can be fruitful key extraction attacks

❑ Multiple tools are available to scour memory for keys:

❑ e.g. aeskeyfind, radare2, volatility

❑ Reverse engineering of the program code in memory can yield pointers to
the memory locations of keys

❑ Don’t underestimate the downplayed Infoleak vulnerabilities

❑ c.f. Heartbleed

Attacks on Building Blocks Section Summary

❑ Hash Attacks – collisions, pre-image etc. use google. All other practical (for us mortals)
attacks are in hashcat, use it.

❑ Classic Crypto Attacks – frequency analysis. Try simple things first, use cryptogram tools,
ID the cipher and try cipher-specific attacks

❑ Stream Cipher Attack – Reused Key Attack. i.e. try XOR (^) things together, make
guesses

❑ Block Cipher Attack Models – probably impractical but use the right search terms

❑ Except ECB: recognize patterns

❑ Don’t forget about software exploitation; in-memory attacks.

❑ Breaking protocols is more fruitful (next sections)

❑ Remember these tools:

❑ http://rumkin.com/tools/

❑ CyberChef: https://gchq.github.io/CyberChef/

❑ Visualization tools: binwalk -E, radare2, binvis.io, Veles, hobbits

http://rumkin.com/tools/
https://gchq.github.io/CyberChef/
http://binvis.io/#/

Protocols

26

Protocols

❑ Protocols – the rules that govern the communication between parties

❑ What information is transmitted from party A to party B?

❑ What steps must party B perform?

❑ What information must be sent in reply (if any)?

❑ etc.

A B

28

Protocol: Simple Authentication
❑ Simple Authentication:

❑ Source: wants to be authenticated by the target

❑ Target: decides if source is authentic

❑ The source sends to the target:

❑ its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key

(KT) that could be specific to the ID and also is known to the target.

► The target looks-up encryption key KT for ID T; decrypts the {…} KT and checks the nonce N hasn’t
been seen before.

► Nonce : Number used ONCE

► E.g. older keyfobs / garage door openers – source is the fob, target is the car or garage door.

source target

T|{T|N}KT

Protocol: Message Authentication Codes (MAC)
❑ Message Authentication Codes: for a message, create a value that can enable the message to be

verified by any party with the shared key (the same shared key that is used to create the value). e.g.:

❑ CBC-MAC – build a MAC with CBC chaining mode of a block cipher

❑ CMAC – also uses a block cipher

❑ HMAC – build a MAC with a hash function

❑ CBC-MAC-AES128, HMAC-SHA1, etc.

❑ Parties receiving messages that don’t verify against the key (shared in this case) shall discard messages

❑ How the shared keys are distributed and how messages are discarded is additional protocol details
(for the next layer of the protocol specification)

➢ aka Message Integrity Code (MIC)

➢ aka protected checksums

➢ Not a MAC: a message digest: f(M) where f is a hash function.

source target

M|’MAC’

Protocol: Digital Signatures
❑ Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to

be verified by any party with the public key but cannot be created by any party without the private key.

❑ a signing party with a private key can create a signature

❑ parties with the public key can verify that signature

❑ e.g. DSA, ECDSA. Let’s consider a simple, older RSA signing:

❑ Send message, M, and signature together

❑ To verify: Decrypt {H(M)}k and assert it is equal to H(M), where H is a cryptographic hash and k is the RSA
private key

❑ In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

❑ How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

❑ e.g. what if they sent: K|M|{H(M)}k where K is the public key?

source target

M|{H(M)}k

31

Protocol: Challenge-Response (C-R)
❑ Source wants to be authenticated by the target

❑ Source receives a nonce as challenge

❑ Transforms it and replies as response

❑ An ideal C-R would make it impractical for an attacker to guess the secret by observing
traffic of multiple C-R exchanges.

❑ If attacker sees both challenge and response ➡ known plaintext attack

source target

=

Ready

Challenge: N

Response: f(N)

PASS / FAIL

f(・)f(・)

rand()

Crypto Crypto

Protocols

Section Summary

❑ Protocols – the rules that govern the communications between parties

❑ Digital Signatures – can be created by parties with the private key but verified by

anyone with the public key (built from asymmetric crypto)

❑ Message Authentication Codes (MAC) – can be created and verified by any party with

the key (can be built from symmetric crypto)

❑ Nonce “number used once” – can be random or a counter …

❑ Simple Authentication – source send its ID and an encrypted ID+nonce pair to a target

for verification

❑ Challenge Response – target sends nonce to source; source replies with some proof
that it has an ID known to the target

❑ e.g. nonce encrypted with key known to source

❑ e.g. nonce transformed with parameters known to source

Attacks on Protocols

33

Attacks on Protocols

❑Generally: try to break the assumptions of the protocol

❑This actually generalizes to “How to attack any specification”:

❑ Anywhere the specification says SHALL/SHOULD – see what

happens when it DON’T…

Attacks on Simple Authentication

❑ Simple Authentication assumes nonce N hasn’t been seen before

❑ If the nonce is random:

❑ Does it actually check? ➡ Send again (Replay Attack)

❑ How many nonces does it store? ➡ Send +1 (Valet Attack)

❑ If the nonce is a counter:

❑ How does it resynchronize? ➡ Try sending counter guesses (Bad counter resync
attack)

❑ Simple Authentication assumes that the key KT is associated with the ID T and

❑ Are there other T that could associate with KT? ➡ Try sending to other target (Key
collision attack)

36

Attacks on MAC
❑ For digests

❑ Recall: these aren’t actually MACs – but they get used that way occasionally

❑ Recall: you will know the input, i.e. you will have at least one digest+message pair

❑ You need to identify digest algorithm – length usually gives it away; also see tools
like cothan/hashdetector

❑ You may need to identify the salt also – hashcat can do this

❑ For HMAC- MD5, SHA1, …:

❑ hashcat can crack the key or salt given a hmac+message pair

❑ Software exploitation, ‘confused deputy’

❑ Software exploitation could enable control of what messages are sent by a piece of
SW designed to send mac+message pairs.

❑ Yields a successful forgery attack unless other software-integrity measures are taken.

37

Attack on Digital Signatures
❑ Recall the RSA Signature example: Send message, M, and signature together

M|{H(M)}k

❑ Agreeing on the K public key for the k private key is a critical part.

❑ What if the protocol includes the public key K?

K|M|{H(M)}k

❑ Then an attack is to use your own private/public key pair a/A and send:

A|M|{H(M)}a

❑Watch out for this broken protocol (sending the pubkey). It happens sometimes…

❑ More generally: try to find ways to substitute the expected public key K for your key, A

❑ Stored in flash somewhere?

38

Attack on Challenge-Response:
Middleperson Attack (in General)

❑ Interposing an actor in-between the source and target
➢ aka MiTM

❑ Enables tampering with the contents, ordering, timing etc.

❑ Good concept for attacks on specific Challenge-Response protocols

❑ Definitely applicable in TLS/SSL attacks when you can interpose

❑ Can even be effectively achieved without physical interposition if messages can be
selectively denied (e.g. CANT or CANHack attacks)

source target

=

f(・)f(・)

rand()

Attacks on Protocols

Section Summary

❑ Attacks on protocols are more fruitful than attacks on building blocks

❑ Simple Authentication Attacks

❑ Key Collisions – e.g. 16bit serial number used as input to key

❑ Key Extraction and Extension – e.g. Keeloq

❑ Replay Attack – capture one or more, replay selectively

❑ Valet Attack – capture a large set during temporary but extended possession

❑ Bad Counter Resynchronization – depends on resync behavior of protocol

❑ MAC

❑ Digests (broken), Hash breaking HMACs, shared-key reuse for MACs

❑ Digital Signature Attacks

❑ Public key substitution

❑ Challenge-Response Attacks

❑ Middleperson Attack

❑ (and more coming up in later section)

Protocol: UDS Seed-Key Exchange

40

41

UDS
❑ Unified Diagnostic Services – ISO 14229 ; on CAN: ISO 15765

❑ Used for nearly ALL vehicle Diagnostic Protocols

❑ You will learn a lot about it in other sessions today and tomorrow

❑ There are actions in UDS that are protected. To execute the action requires

authorization: e.g.

❑ Read memory

❑ Reflash ECUs

❑ Perform potentially dangerous maintenance operations

➢ aka ‘the fun stuff’

42

UDS Authorization

❑ Sometimes UDS is helpful; it will tell you that you need to authorize

❑ Negative Response Code : SecurityAccessDenied

❑ You’ll learn about these

❑ To authorize; unlock the current session with SecurityAccess Seed-Key Exchange

❑ ‘Session holder’ (server) emits a ‘seed’; ‘session user’ (client) returns a ‘key’

❑ Service 0x27 (replies on 0x67)

❑ Subfunction 0x05 for requestSeed / 0x06 for sendKey

❑ You’ll know more about these soon

43

Seed-Key Exchange
Seed-key exchange is a Challenge-Response Protocol

Only 16-bit space; so it might not fit our ideal characteristics of resisting known

plaintext forgery attacks

The ‘seed’ here is a challenge and the ‘key’ here is a response

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

44NB: J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

Daily J., COMVEC15, A Digital Forensics Perspective …

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

45

5 Minute Hands-On:

Derive the Seed-Key Routines
1 2 3

18DAF100#0467055b31
18DA00F1#0427065c31
18DAF100#0467053632
18DA00F1#0427063732
18DAF100#0467052c31
18DA00F1#0427062d31
18DAF100#0467053839
18DA00F1#0427063939

18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435

18DAF100#0467052c31
18DA00F1#0427060005
18DAF100#0467053132
18DA00F1#0427061d06
18DAF100#0467053732
18DA00F1#0427061b06
18DAF100#0467053137
18DA00F1#0427061d03

Daily J., COMVEC15, A Digital Forensics

Perspective …

46

Attacking Seed-Key Exchange

Attack Goals:

a)Get a security session (small-scale)

b)‘Pirate’ a security session (large-scale)

For a):

If you do have diagnostic SW:

• Use a middleperson attack; done.

If you don’t:

• Then it is equivalent to pirating a session ; which we’ll expand on…

47

b) Pirating it…

1.0 'Pirate’

a SecuritySession

(0x27)

AND

Obtain Diag SW (3.0)

OR

4.0 LUT extraction

4.1 RE algorithm and params
from Diag SW

AND

Obtain ECU FW (3.2)

3.3 RE algorithm and params
from ECU FW

AND

Obtain captures of 0x27 (3.4)

OR

4.2 Solve for unknowns in a know
formula

4.3 Retry seeds until repeated
from capture

2.3 Brute-force

2.4 Glitch past the check

48

Protocol: Seed-Key Exchange

Section Summary

❑ J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

❑ SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

❑ If you have diagnostic software:

❑ Reverse the key algorithm & parameters from PC software

❑ Black-box / Lift the key algorithm & parameters

❑ If you have ECU firmware:

❑ Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

❑ If you have some captures of successful SecurityAccess:

❑ Solve for unknowns in a known formula from related ECUs

❑ Retry seeds until a match occurs with one in the captures

❑ If you have only the ECU:

❑ Brute-force (can you control the seed?)

❑ Get some captures (e.g. service center) – see above

❑ Glitch past the check – be amazing

Closing

49

Summary

❑ ’Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

❑ ’Crypto is hard’ →means correct crypto is hard to break, if you have only the capture

of communications

❑ Crypto building blocks don’t get broken very often (given only the capture of comms)

❑ Crypto protocols get broken

❑ Crypto gets broken via side-channels

❑ Crypto gets broken by compromise of execution environment

❑ You can middleperson-attack TLS/SSL

❑ You can lift/reverse/solve/brute-force Seed-Key Exchange

51

Resources for Continued Learning

• Cryptopals (CTF), T. Ptacek et. al.

• Let’s Play with Crypto (Pres.), Ange Albertini

• Any and all SO answers by Thomas Pornin

• Security Engineering (Book), Ross Anderson

• PotatoSec Crypto Puzzle Challenges

• POC||GTFO (Journal), mirror

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://stackoverflow.com/users/254279/thomas-pornin?tab=answers
https://www.cl.cam.ac.uk/~rja14/book.html
https://www.potatopla.net/crypto/
https://www.alchemistowl.org/pocorgtfo/

Cryptography Session:

”How Crypto Gets Broken (by you)”

-- UNABRIDGED --

Cybertruck 2021

52

About Me

❑ Senior Cybersecurity Research Engineer

contractor at NMFTA

❑ Attack Tree Fanatic

❑ Enjoys CTFs (maybe a little too much)

❑ Enjoys Teaching

❑ >10 years of professional experience in

embedded systems design

❑ Masters of Engineering in Applied Math &

Stats from Queen's University

❑ Member of and contributor to SAE

TEVEES18A1 Cybersecurity Assurance

Testing TF (drafting J3061-2) and some ATA

TMC committees

❑ HHV and CHV volunteer

linkedin.com/in/Ben0L0Gardiner

github.com/BenGardiner

@BenLGardiner

Thanks to:

54

@Sagefault + @KennethSalt + Dr. Jeremy Daily

And the CyberTruck Challenge™ Event

previously presented at:

CyberTruck Challenge™ 2018 & 2019 /
HF2020 / NSec 2021

Agenda

❑ We will break regularly for

questions at section breaks

❑ But also feel free to ask

questions anytime

❑ Much material from the following

reference:

Anderson, Ross. Security

engineering. John Wiley & Sons,

2008.

❑ Buy this book!

❑ Prev. editions are also free!

www.cl.cam.ac.uk/
~rja14/book.html 55

Challenge: Decrypt ‘Crypto’ 10

Building Blocks 20

Challenge: Break Hashes 15

↘Attacking Building Blocks 20

Challenge: Break Crypto, others 25

↘(More) Attacking Building Blocks 10

Challenge: Visualize Crypto 20

Protocols 15

↘Attacking Protocols 10

Protocol: WPA2 (↘ Attacks) 5

Protocol: TLS / SSL (↘ Attacks) 20

Heavy Vehicle Networks Crash Course 5

Protocol: UDS Seed-Key Exchange (↘ Attacks) 30

Challenge: Derive the UDS Routines 15

210 mins

https://www.cl.cam.ac.uk/~rja14/book.html

56

‘Crypto’

Crypto Building Blocks

57

Encryption

❑ Encryption – an encoding which can be reversed (given a key)

❑ A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E)

using a key (K)

E = {M}K

❑ Decryption is possible with the cipher, the ciphertext, and the key

❑ e.g. AES, RSA, ECC, 3DES, …

❑ Something that’s not encryption: base64 (e.g.
ZS5nLiB0aGlzIGJhbG9uZXkgcmlnaHQgaGVyZQ==)

59

Hands-On: 10 Minute Challenge

’Decrypt’ these (you’re actually decoding):

❑ d2VsY29tZSB0byBIRjIwMjA=

❑ c2VudGluZWw=

These are base64 encoded (not encrypted).

This might seem obvious to some – but it is not uncommon to encounter

base64 ‘encryption’ in the wild.

Here’s a handy set of tools for this: http://rumkin.com/tools/
Also python/jupyter: import base64; base64.b64decode('xxx')

http://rumkin.com/tools/

Hashes
❑ (Cryptographic) Hashes – not an

encoding & not reversible

❑ Different than the larger, general
class of hash functions

❑ For a crypto. hash function f:
given f(x) you can’t find (guess or
calculate) x

❑ i.e. shouldn’t be able to find input x for:
3947cdf52a551de4983746545a1affdb2b04f4a2 or
21232f297a57a5a743894a0e4a801fc3
(actually, this one is easy)

➢ aka One-way Functions

➢ aka Random Functions

➢ aka Shortcut Functions

➢ aka One-way Compression

Functions

➢ aka Digests

❑ e.g. SHA-1, SHA-256, BLAKE, …

❑ not a cryptographic hash: MD5

61

‘Classic’ vs Modern Crypto
❑ ’Classic’ Crypto

❑ Mostly pre-20th century

❑ Deals with alphabets: input & output

❑ e.g. shift cipher (Cesar cipher)

🔠🔠🔠…🔠🔠🔠 🔀 qbag qrpvcure guvf

❑ e.g. substitution cipher, polyalphabetic substitutions, transpositions etc.

❑ It is still encryption – the ‘key’ is the knowledge of the mapping (shift, letter-
map etc.)

❑ Relevance today: puzzles, challenges and easy reverse engineering

❑ Modern Crypto

❑ Deals with numbers: input & output

❑ Text is treated as numbers via encodings – ASCII or UTF-8 is the most likely
encoding
e.g.
646f6e742064656369706865722074686973 ⨁ (00…10) ➡
646e6c77246163646179626e7e2d7a677962

* Matt_Crypto, wikipedia, Public

Domain

62

Stream Ciphers
❑ One-Time Pad (OTP) – the only proven

secure encryption scheme

❑ Uses random key-stream, of length

equal to or greater than the

message

❑ Then combine key-stream with
message (assume XOR)

❑ Stream Ciphers – approximate the OTP

❑ Expand short key into pseudo-

random keystream

❑ Then XOR (⨁) (^)

❑ e.g. RC4, Salsa20, FISH

❑ note: IV – initialization vector. It shouldn’t

need to be secret

Di Kyle Siehl - Self-made, based on raster w:Image:Wep-crypt.png, which was taken with permission

from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1806804

63

Block Ciphers

❑ Block Ciphers – different approach

❑ Uses a key and fixed-length inputs (blocks)

❑ Combined with previous outputs and more fixed-length inputs in various

modes:

❑ ECB, CBC, PCBC, CFB, OFB, CTR … GCM(!)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434116

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434096

64

Symmetric / Asymmetric Crypto
❑ Symmetric Crypto – can be encrypted + decrypted by any party with the SAME key

❑ e.g. any of the crypto we’ve discussed so far

❑ Asymmetric Crypto – can be encrypted by any party for a specific recipient

❑ aka public-key cryptography

❑ Leverages certain problems that are hard in one way & easy in the other: prime

factorization and discrete logarithms

❑ Keys exist as pairs of public & private halves -- key-pairs

❑ The party with the private key can decrypt & sign (more on signatures later)

❑ Any parties with the public key can encrypt & verify

➢ e.g. RSA, ECC

❑ e.g.
-----BEGIN RSA PRIVATE KEY-----
izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJgCQuuvT+qZI
…

Crypto Building Blocks

Section Summary

❑ Encryption… it hides information, binds it – protects confidentiality, but not integrity
(without additional effort)

E = {M}K

❑ (Crypto) Hashes – one-way functions. With f(x) you cannot get x

❑ ’Classic’ Crypto – involves alphabets not numbers

❑ Stream Cipher – combine a sequence of key bits with a sequence of cleartext bits with
XOR (⨁) (^)

❑ Block Ciphers – have a limited key stream, but extend to larger cleartext sequences

❑ Not all block cipher modes are created equal (e.g. Electronic Coloring Book (ECB))

❑ Symmetric Crypto – all parties share the same key

❑ Asymmetric Crypto – only one party has the decryption key (private key)

Attacks on Building Blocks

66

Attacking Hashes
❑ Google.

❑ Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

❑ Identifying what type of hash you have in-hand will be useful – the length gives it away

❑ If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector

❑ Hash Crack sites

❑ hashcat tool

❑ (ab)uses your GPU for rapid hash cracking

❑ Rainbow Tables

❑ ’halves’ / parts-of hashes pre-built and ready to go

❑ For things like MD5 these are trivial

❑ For things like SHA-256 these are huge (multi-TB)

❑ You can pick-up pre-generated tables at DEFCON Data Duplication Village. Bring a 6 TiB HDD.

❑ And cooler things like hash-length extension attacks

68

Cooler Attacks on Hashes
❑ Hash-Length Extension Attacks

❑ Take a known H(‘start’) and add to it
to get: H(‘start’ + junk)

❑ Get to a known identical hash for
‘start’ and ‘start’ + junk

❑ Taking Advantage of File Formats

❑ PDF has lots of place to hide
information

❑ See Ange Albertini’s work on PDF
polyglots

❑ This can be leveraged to create
PDFs with the same SHA-1

❑ https://shattered.io/ 😎

https://shattered.io/

69

More on Attacking Hashes

❑ Salts

❑ Because it’s pretty easy to lookup or build a table of known inputs for

hashes; designers tend to follow the best practice of ’salting’ their inputs

❑D033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)

❑3947cdf52a551de4983746545a1affdb2b04f4a2 = SHA1(‘saltadmin’)

❑ Salts are usually pre-prepended onto the input; sometimes with a separator

like ‘.’ or ’+’

❑ hashcat can find a salt for a given hash and input pair.

❑ hashcat can also find inputs for hashes with a given salt as a parameter.

❑Find the salt with one known hash first.

❑OR find the salt with research (some systems’ password salts are well-known)

70

Still More on Attacking Hashes

❑ Password lists

❑ Brute-forcing (all possible character
combinations) for inputs to hashes is
possible

❑ ‘password lists’ are more useful. There are
hundreds of these to choose from, most
from data breaches over the past years.

❑ In CTFs the rockyou list is the most
common – but for applied hash cracking:
YMMV.

❑ This is more generally known as a
dictionary attack

71

Hands On: 15 Minute Challenge

Reverse these hashes:

❑5f4dcc3b5aa765d61d8327deb882cf99

❑5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

❑ecadec2924e86bf88d622ceb0855382d

❑ff4827739b75d73e08490b3380163658

❑6ce3bb6eb450df7d6345151ec00e4a4e

We’ve mentioned the tools you need for this.

Some are easy. One is not (hint: 2 character salt)

Attacking ‘Classic’ Crypto
❑Historically, frequency analysis was the undoing of classic crypto

❑ Letter use in a language (e.g. English) has a predictable #

occurrences (frequency)

❑ Count the number of occurrences of a symbol in ciphertext; match

to expected rate in language

❑ Requires medium-large ciphertext for analysis to work

❑Today (challenges/puzzles/RE):

❑ Try shift ciphers (start with ROT13)

❑ Then try a substitution cipher

❑ Then have ‘fun’ : http://rumkin.com/tools/cipher/

http://rumkin.com/tools/cipher/

Hands On: 10 min Classic Crypto Attack Example

❑ E->B? E->A ? E->R ?

❑ Try them all: http://rumkin.com/tools/cipher/caesar.php

❑ Shift 13 (aka ROT-13):

❑ “Cybertruck 2018 for the win! A huge thank you needs to go out to our
sponsors. This pro-industry event depends on active sponsor involvement and
support.”

Ploregehpx 2018 sbe gur jva!
N uhtr gunax lbh arrqf gb tb bhg gb bhe fcbafbef. Guvf ceb-vaqhfgel
rirag qrcraqf ba npgvir fcbafbe vaibyirzrag naq fhccbeg.

http://rumkin.com/tools/cipher/caesar.php

74

Stream Cipher Attacks
❑Re-used Key Attack

❑ Recall: it’s all about XOR (⨁) (^)

❑ If I know A^B and I know A or B, I can get the other

❑ Anytime a stream cipher re-uses keys, it’s a problem

❑ if I have E1 = A^K and E2 = B^K I can get A^B

❑ this is a big deal if:

❑A, B are natural language (use running key cipher attacks on A^B) or if

❑A, B are different lengths or if

❑we can control A or B or if

❑we can make any guesses about A or B

75

Hands On: 15 Minute Challenge

Break these stream-ciphertexts

And get the key

❑ad9bc999b790c281

❑b69895ddecce86cc

❑ it’s all about XOR (^)

❑ gchq.github.io/CyberChef/ is great for playing around with
XOR

❑ Key is 32 bits / 4 bytes

❑ I’m lazy (I re-use things)

❑ ‘sentinel’ ^ 0xDEFEA7ED // ‘hf2020!!’ ^ 0xDEFEA7ED

76

Block Cipher Attacks

❑Getting impractical now…

❑Goals: forgery or key-recovery

❑ Block Cipher Attack Models

❑ known plaintext: attacker is given a set of pairs of cleartext+ciphertext

❑ chosen plaintext: attacker has the ability to query cleartext and receive
ciphertext

❑ chosen ciphertext: attacker has the ability to query ciphertext and receive

cleartext

❑ chosen plaintext/ciphertext: attacker has the ability to query either

❑ related key: attacker has the ability to query with key related to specified
key, K (e.g. K+1 K+2, ...)

77

Padding Oracle Attacks

❑An example chosen ciphertext attack:

❑Padding oracle attack: attacker supplies ciphertext, detects ‘incorrect

padding’ error conditions – can use this oracle to ultimately decrypt

messages

❑Surprisingly common

78

Cryptanalysis and More

❑ Linear Cryptanalysis

❑ solving for linear relationships between
cleartext (input) and ciphertext
(outputs)

❑ at fractional likelihoods

❑ using the likelihoods to sometimes
predict ciphertext from cleartext

❑ 'correct' crypto is designed to resist
these attacks

❑ Differential Cryptanalysis

❑ solving for sensitivity relationships of
changes to cleartext bits (input) onto
ciphertext bits (outputs)

❑ at fractional likelihoods

❑ then use any high likelihoods to guide
attacks with chosen inputs

❑ Modern ‘correct’ crypto is design to
resist these attacks too

❑ Other Cool Stuff: Slide Attack, XSL Attack,
Impossible Differential, Boomerang, ...

79

Reality Check
❑ We talked about attack models & attack goals; some families of attacks

❑ No simple attacks after ‘Classic’ crypto

❑ Few practical attacks

❑ Attacking Crypto these ways is hard, for ’correct’ crypto:

❑ e.g. SHA-256, AES-128, RSA-2048, ECC w/ curve 25519

❑ For incorrect crypto (e.g. anything else)

❑ Is it XOR ‘Crypto’? ➡ Try XOR ciphertexts together; try XORing it with good guesses too

❑ OR Are there repetitions of data patterns in the ciphertext? Maybe it is ECB mode or maybe it is key-reuse in a

stream cipher

❑ OR If you know the name of the crypto, use google – maybe you will find tool or PoC to break it

❑ But it’s not impossible

❑ People build protocols out of these building blocks – protocols get broken more often

❑ (and don’t forget side-channel attacks and software exploitation)

80

Hands-On: 10 Minute Challenge

Decipher the following strings:

Lqydolg#Sdvvzrug$ Sdvvzrug#RN$$$#=,

Hints:

❑ from the IOLI crackme challenges:

pof.eslack.org/tmp/IOLI-crackme.tar.gz

❑ ‘Sdvvzrug’ shows up in both strings, this tells you something

❑ ‘#’ is 0x35 and ‘$’ is 0x36

❑ ‘ ’ is 0x32 and ‘!’ is 0x33

❑ rumkin.com/tools/cipher/caesar.php

Done? Already? Do a ‘beginner’ challenge at potatopla.net/crypto/

Other Attacks on Block Ciphers

❑ Recognizing ciphertext blocks can let you
decrypt them:

maybe not to their contents, but to their meaning

 (Sometimes also their contents; e.g. infer all-zeroes
input)

❑ Use viz tools: vix, radare2, binvis.io, Veles, hobbits

https://github.com/pakesson/diy-ecb-penguin

=AES_ECB()

http://binvis.io/#/

82

Other Attacking Building Blocks
❑ Software Exploitation can yield both control of the software and also

information leaks

❑ Access to process memory can be fruitful key extraction attacks

❑ Multiple tools are available to scour memory for keys:

 e.g. aeskeyfind, radare2, volatility

❑ Reverse engineering of the program code in memory can yield pointers to
the memory locations of keys

❑ Don’t underestimate the downplayed Infoleak vulnerabilities

❑ c.f. Heartbleed

83

Aside: Entropy Visualization

 Entropy (in the sense of C. Shannon) is a metric of information-density in

message/value/bit-sequence

 It turns out (thanks also to Shannon) that information is maximized when the

likelihood of 1/0 are equal

 i.e. ‘completely random’ IS highest entropy.

 The entropy of a bitsequence can be estimated

 Estimated entropy approaches 1.0 for random number sequences

 Next-closest to 1.0 is ‘correct’ crypto

 Then compressed data

 Estimated entropy is not high for other data (structured data)

84

Aside: Entropy Visualization (cont’d)

❑The entropy estimates can be broken-up over a large input and

visualized

❑You can identify and distinguish between

❑ encrypted (correct) content

❑ Other encrypted (incorrect) content

❑ Compressed content

❑Rules of thumb:

❑ Compression looks like pretty high entropy

❑ Encryption looks like really high entropy

85

Aside: Entropy Visualization (cont’d)

AES ECB AES CBC

Image

binvis.io

entropy

binwalk

86

Hands-On: 15 Minute Challenge

Use Entropy Visualization (and anything else) to Identify:

a) A compressed file

b) An ECB-mode encrypted file

c) A ‘correct’ encrypted file

In the set: https://goo.gl/LbzMbE

Use these (or any other tools):

❑ http://binvis.io
❑ binwalk –E
❑ Veles

❑ hobbits

❑ radare2

❑ hex editors
I corrupted some headers to break file magic

http://binvis.io/

Attacks on Building Blocks Section Summary

❑ Hash Attacks – collisions, pre-image etc. use google. All other practical (for us mortals)
attacks are in hashcat, use it.

❑ Classic Crypto Attacks – frequency analysis. Try simple things first, use cryptogram tools,
ID the cipher and try cipher-specific attacks

❑ Stream Cipher Attack – Reused Key Attack. i.e. try XOR (^) things together, make
guesses

❑ Block Cipher Attack Models – probably impractical but use the right search terms

 Except ECB: recognize patterns

❑ Don’t forget about software exploitation; in-memory attacks.

❑ Breaking protocols is more fruitful (next sections)

❑ Remember these tools:

 http://rumkin.com/tools/

 CyberChef: https://gchq.github.io/CyberChef/

 Visualization tools: binwalk -E, radare2, binvis.io, Veles, hobbits

http://rumkin.com/tools/
https://gchq.github.io/CyberChef/
http://binvis.io/#/

Protocols

88

Protocols

❑ Protocols – the rules that govern the communication between parties

❑ What information is transmitted from party A to party B?

❑ What steps must party B perform?

❑ What information must be sent in reply (if any)?

❑ etc.

A B

90

Protocol: Simple Authentication
❑ Simple Authentication:

❑ Source: wants to be authenticated by the target

❑ Target: decides if source is authentic

❑ The source sends:

 its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key
(KT) that could be specific to the ID and also is known to the target.

❑ The target:

❑ looks-up encryption key KT from given ID T;

❑ decrypts the {…}KT and checks the nonce N hasn’t been seen before.

► Nonce : Number used ONCE

(e.g. older keyfobs / garage door openers – source is the fob, target is the car or garage door.)

source target

T|{T|N}KT

Protocol: Message Authentication Codes (MAC)
 Message Authentication Codes: for a message, create a value that can enable the message to be

verified by any party with the shared key (the same shared key that is used to create the value). e.g.:

 CBC-MAC – build a MAC with CBC chaining mode of a block cipher

 CMAC – also uses a block cipher

 HMAC – build a MAC with a hash function

 CBC-MAC-AES128, HMAC-SHA1, etc.

 Parties receiving messages that don’t verify against the key (shared in this case) shall discard messages

 How the shared keys are distributed and how messages are discarded is additional protocol details
(for the next layer of the protocol specification)

➢ aka Message Integrity Code (MIC)

➢ aka protected checksums

➢ Not a MAC: a message digest: f(M) where f is a hash function.

source target

M|’MAC’

Protocol: Digital Signatures
 Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to

be verified by any party with the public key but cannot be created by any party without the private key.

 a signing party with a private key can create a signature

 parties with the public key can verify that signature

 e.g. DSA, ECDSA. Let’s consider a simple, older RSA signing:

 Send message, M, and signature together

 To verify: Decrypt {H(M)}k and assert it is equal to H(M), where H is a cryptographic hash and k is the RSA
private key

 In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

 How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

 e.g. what if they sent: K|M|{H(M)}k where K is the public key?

source target

M|{H(M)}k

93

Protocol: Challenge-Response (C-R)
 Source wants to be authenticated by the target

 Source receives a nonce as challenge

 Transforms it and replies as response

 An ideal C-R would make it impractical for an attacker to guess the secret by observing
traffic of multiple C-R exchanges.

 If attacker sees both challenge and response ➡ known plaintext attack

source target

=

Ready

Challenge: N

Response: f(N)

PASS / FAIL

f(・)f(・)

rand()

Crypto Crypto

Protocols

Section Summary

 Protocols – the rules that govern the communications between parties

 Digital Signatures – can be created by parties with the private key but verified by

anyone with the public key (built from asymmetric crypto)

 Message Authentication Codes (MAC) – can be created and verified by any party with

the key (can be built from symmetric crypto)

 Nonce “number used once” – can be random or a counter …

 Simple Authentication – source send its ID and an encrypted ID+nonce pair to a target

for verification

 Challenge Response – target sends nonce to source; source replies with some proof
that it has an ID known to the target

 e.g. nonce encrypted with key known to source

 e.g. nonce transformed with parameters known to source

Attacks on Protocols

95

Attacks on Protocols

Generally: try to break the assumptions of the protocol

This actually generalizes to “How to attack any specification”:

 Anywhere the specification says SHALL/SHOULD – see what

happens when it DON’T…

Attacks on Simple Authentication

 Simple Authentication assumes nonce N hasn’t been seen before

 If the nonce is random:

 Does it actually check? ➡ Send again (Replay Attack)

 How many nonces does it store? ➡ Send +1 (Valet Attack)

 If the nonce is a counter:

 How does it resynchronize? ➡ Try sending counter guesses (Bad counter resync
attack)

 Simple Authentication assumes that the key KT is associated with the ID T and

 Are there other T that could associate with KT? ➡ Try sending to other target (Key
collision attack)

98

Attacks on MAC
 For digests

 Recall: these aren’t actually MACs – but they get used that way occasionally

 Recall: you will know the input, i.e. you will have at least one digest+message pair

 You need to identify digest algorithm – length usually gives it away; also see tools
like cothan/hashdetector

 You may need to identify the salt also – hashcat can do this

 For HMAC- MD5, SHA1, …:

 hashcat can crack the key or salt given a hmac+message pair

 Software exploitation, ‘confused deputy’

 Software exploitation could enable control of what messages are sent by a piece of
SW designed to send mac+message pairs.

 Yields a successful forgery attack unless other software-integrity measures are taken.

99

Attack on Digital Signatures
 Recall the RSA Signature example: Send message, M, and signature together

M|{H(M)}k

 Agreeing on the K public key for the k private key is a critical part.

 What if the protocol includes the public key K?

K|M|{H(M)}k

 Then an attack is to use your own private/public key pair a/A and send:

A|M|{H(M)}a

 Watch out for this broken protocol (sending the pubkey). It happens sometimes…

 More generally: try to find ways to substitute the expected public key K for your key, A

 Stored in flash somewhere?

100

Attack on Challenge-Response:
Middleperson Attack (in General)

 Interposing an actor in-between the source and target
➢ aka MiTM

 Enables tampering with the contents, ordering, timing etc.

 Good concept for attacks on specific Challenge-Response protocols

 Definitely applicable in TLS/SSL attacks when you can interpose

 Can even be effectively achieved without physical interposition if messages can be
selectively denied (e.g. CANT or CANHack attacks)

source target

=

f(・)f(・)

rand()

Attacks on Protocols

Section Summary

 Attacks on protocols are more fruitful than attacks on building blocks

 Simple Authentication Attacks

 Key Collisions – e.g. 16bit serial number used as input to key

 Key Extraction and Extension – e.g. Keeloq

 Replay Attack – capture one or more, replay selectively

 Valet Attack – capture a large set during temporary but extended possession

 Bad Counter Resynchronization – depends on resync behavior of protocol

 MAC

 Digests (broken), Hash breaking HMACs, shared-key reuse for MACs

 Digital Signature Attacks

 Public key substitution

 Challenge-Response Attacks

 Middleperson Attack

 (and more coming up in later section)

Protocol: WPA2

WPA2

 Wi-Fi Protected Access 2

 Wi-Fi confidentiality measure

 Supersedes WEP (which was a very broken protocol)

 WPA2-Personal (-PSK)

 uses a pre-shared key.

 Each client (supplicant in WPA-speak) gets its own session key

 Setup of the key is visible at different levels.

 WPA2-Enterprise

 Enables authentication of the Access-point

 All communication with the Access-point is done with individualized keys

 Let’s discuss WPA2-Personal

WPA2 Handshake

4-way handshake

 A nonce

 Then another nonce with MAC

 Then a global key with MAC

 Then an ACK

Grossly over-simplified

Supplicant
(client)

Access
point

Key (& MAC)

Ack

Client starts

using (installs)

session key

here.

Nonce (& MAC)

Nonce

105

Attacks on WPA2

There is a MAC, implemented as a HMAC which is sent by supplicants and derived from

the pre-shared key

 Hash attacks to reverse this

 There are advantages to having observed multiple nonce & MAC -- so the

attack starts with causing the target to deauthorize from the Wi-Fi (repeatedly)

 hashcat can do the cracking, but not the de-auth

 airocrack-ng can do both

106

Attacks on WPA2 (cont’d)

 There is a key reuse vulnerability in some client
software, dubbed KRACK

 When the key is ‘installed’, the client resets its
communication counters

 By replaying message 3 in the handshake,
counters can be reset repeatedly – key reuse
attack

 Some systems were even vulnerable to
installing a null-key by sending a tampered 3rd

message

 Fun-fact: WPA2 had been formally-proven secure.

 The spec of the formal proof did not include
”keys must be ‘installed’ once and only once”

Ack

Nonce (& MAC)

Nonce

0x00…00(& MAC)

Ack

Nonce (& MAC)

Nonce

Key (& MAC)

Key (& MAC)

https://www.krackattacks.com/

https://www.krackattacks.com/

107

Hands-On: 1 Minute Challenge

Capture as many users of the Cybertruck Wi-Fi as you can in 1 minute.

I’m kidding – please don’t attack the Wi-Fi. I’m

using it.

❑ KRACK is unnecessary – your systems all know the WPA2 password

already (it is a pre-shared key)

❑ How this would work :

❑ ’de-auth’ other clients so you could witness their handshake with

the Access Point.

❑ At which point you would have their session key and could

decrypt all their traffic.

108

Protocol: WPA2

Section Summary

WPA2 Passwords can be cracked, indirectly, via the hashes exposed in the

handshake

 The process is accelerated by capturing multiple 4-way handshakes, so

the attack usually also includes a flood of de-authenticating the clients

WPA2 keys can be reinstalled (KRACK)

 Re-installing a key resets counters – this gives a key reuse attack

 Sometimes WPA2 keys can be nulled (KRACK)

 Then follow up with known-key attack (v. simple in this case)

 These attacks on Wi-Fi require clients are connected

Protocol:

TLS / SSL

109

Protocol: TLS / SSL
 Transport Layer Security (TLS). Was SSL, now that name is deprecated

 Used in HTTPS – but can be found without HTTP

 Provides both confidentiality and authentication of endpoints

 typically client authenticates server

 Sometimes server also authenticates client -- we’re not going cover this

?

…

…
connect

certificate

111

Certificates?

Chains of Digital Signatures (asymmetric crypto)

 Recall: only the owner of the private part of a public key-pair can:

 decrypt traffic encrypted to the public key

 create a signature verifiable by anyone with the public key

By Yanpas - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=46369922

112

How Clients Are Supposed to Authenticate Servers

in?

Trust Store

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46369922

113

Client Implementations of Server Authentication

NB: The proxies will work out-of-the-box on Type 1 and Type 2

“Type” Trust

Type 1 Trust anything (no SSL/TLS)

Type 2 Trust any valid certificate

Type 3 Trust any root-CA in OS Trust Store

Type 4 Trust only (pin) the pub key of certificate

Type 5 Trust only (pin) the pub key of cert. signer

Type 6 Pinning and Integrity Verification0xc0de

114

Middleperson (aka MiTM) Attacks

• HTTP Proxies: mitmproxy, Burp, ZAP, martian

• Non-HTTP: MiTMF, ettercap, bettercap, SSLSplit

• Some require that you setup the proxy as a gateway -- some can work as a

sibling (leveraging ARP poisoning)

115

Certificate Substitution Attacks (on Type 2)
 Proxy creates two TLS connections

 Upstream, client connection to server – normal, valid, nothing to see here

 Downstream, served to client – supplies some other certificate

 Type 2 client sees ‘a cert’ and is happy

?

…

…
connect

certificate

…

…
connect

‘certificate’

Trust Store Attacks (on Type 3)

Can you add a root certificate authority to the trust store?

 If you have UI access to an Android device the answer is probably yes

Can you use a compromised root certificate that is already in the trust store?

 There have been several compromised root certificates over the years

(Komodo, Symantec)

 If the devices is old enough, the compromised root certificate might be in

its trust store

 Forge a server certificate signed with the secret from the compromise root;
install that in the proxy (e.g. mitmproxy, Burp, etc.)

Getting the compromised secret is… the tricky part

117

Types 4-5 Attacks
 Recall: types 4-5 use certificate pining – they will only accept a connection from a

server with a particular expected public key

 If a different public key is supplied they abort connections

 Software Exploitation is the only remote attack

 If you have superuser privileges on the systems executing the type 4-5 app then
there are simple ways to replace the expected pub key or bypass the abort
connection response:

 Patch the pubkey from the software

 Runtime hooking: e.g. Universal Android SSL Pinning Bypass with Frida
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-
with-frida/

 The runtime integrity checks will prevent most patches, hooks and exploits.

Types 6 Attacks

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

118

Other Attacks (on all types)

 SWEET32 – monitor long-lived Triple-DES and recover cookies

 DROWN – break confidentiality of some TLS (downgrade)

 Logjam – break confidentiality and integrity of some TLS (downgrade)

 POODLE – break confidentiality and integrity of some TLS (downgrade)

 Not very practical – only PoCs available : poodle-PoC , Tim---/drown , drownAttackDemo

 There are even passive differential cryptanalysis attacks – working only at large-scale and long
time periods

 Recover a RSA private key from a TLS Session with Perfect Forward Secrecy – Marco Ortisi

 Other ‘other attacks’ (not confidentiality or integrity compromising):

 Heartbleed – exploit memory leak in some OpenSSL versions to view 64K of server memory
(in theory could yield a server secret)

Protocol: TLS / SSL

Section Summary
 TLS (SSL is deprecated) sets up a channel with confidentiality and authentication

 Confidentiality is established with key-exchange

 Authentication is established with certificate chain verification – the chain ultimately ending in
an authority in a trust store of the endpoint

 TLS/SSL middleperson attacks require a network interposition and include:

 Abuse of endpoints not checking certificate chains

 Abuse of trust-stores – adding new authorities into them, or convincing users to do it

 (rare) crypto breaks to obtain session or master keys

 (less rare) forced downgrade to TLS/SSL version with publicly broken crypto

 Other TLS/SSL Attacks (some are aforementioned rare crypto breaks):

 SWEET32, DROWN, logjam, POODLE, Heartbleed

 Tools:

 mitmproxy, Burp, ZAP, MITMf

 poodle-PoC , Tim---/drown , drownAttackDemo

Heavy Vehicle

Networks Crash Course

120

1/3 Rapid Review: CAN

A very common bus in Automotive

2 wires. Serial. 250-500kbps.

Ford OpenXC Platform 2017

2/3 Rapid Review: CAN

It is a ISO Levels 0-2 (ish) framing/signaling protocol.

• For GORY details, watch When CAN CANT - Tim Brom
and Mitchell Johnson @ GRIMM

https://www.youtube.com/watch?v=oS-6xDc_pP4

3/3 Rapid Review: CAN

 Applications commonly pack signals into bitfield locations of a frame ‘type’
(Arbitration ID)

 Encoding time-varying signals by changing those bitfield contents over time

0x7263 0x00ff00dcdc0000
0x7263 0x00ff00fedc0000

0x263 00ff0002000000

Ford OpenXC Platform 2017

Arb ID Data

time

10-1000 Hz

About

Trucks
 aka Tractors aka Power Units aka ‘The things that roll’.

If it isn’t moving then the fleet is losing money.

J2497 aka PLC4TRUCKS

J1708 / J1587

J1939

‘PT’ J1939

‘CABIN’ J1939

ABS

J560
Connect

or

OEM
Telematic

s

Brake
Telematic

s

Engine
Telematic

s

Gateway

Engine /
Aftertreat.

Trans-
mission

Tire Pres
Mon Sys

Radio
Climate
Control

Instrument
Cluster

ADAS
Lane
Keep

Adaptive
CC

Stability /
Suspensio

n

SRS
Cameras
(Int & Ext)

Body /
Chassis

RP1226
Connect

or

OBD
Connect

or

Fleet
Telematic

s

Pinouts

125
(A

)
G

N
D

B
C

D

A

E

F

G
H

J

J1939 Lo

J1939 2 Hi *
J1939 2 Lo *

+12V
J1939 HiJ1939 Shield

J1708 Hi
J1708 Lo

J1939 Specifics: CAN Frames

29bit Arbitration ID
Data Field

(8byte max)

Error

Checking

Control

Field
ACK

ID A ID B

Arb ID bits (host): 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

for unicast: PGN>>8 Dest Addr

for bcast: PGN

for all: priority re
s

p
a

g
e

Source Addr

(stuff bits)

sigrok with kentindell/canhack can2 decoder:

https://github.com/kentindell/canhack

J1939 in relation to CAN in Passenger Cars
 Both: encoding time-

varying signals into bitfield
locations and diagnostics

 Passenger cars:

1. proprietary Arbitration ID,

2. proprietary bitfield
locations,

3. standard diagnostics
(mostly)

 J1939:

1. standard PGNs (mostly),

2. standard SPNs (mostly),

3. proprietary diagnostics

0x7263 0x00ff00dcdc0000
0x7263 0x00ff00fedc0000

0x263 00ff0002000000

Ford OpenXC Platform 2017

Arb ID Data

time

10-1000 Hz

0x7263 0x00ff00dcdc0000
0x7263 0x00ff00fedc0000

0x7263 00ff0002000000

Ford OpenXC Platform 2017

“PGN” Data

time

10-1000 Hz

J1939 Features
 Both unicast (PGNs < 0xF000) & broadcast (>= 0xF000)

 Transport fragmentation and reassembly (PGNs 0xEC00 and 0xEB00)

 Address claiming (PGN 0xEE00)

 Request of PGNs (PGN 0xEA00)

 Proprietary messages:

destination-specific (propA 0xEF00 and propA2 0x1EF00) and

broadcast (propB0 0xFF00-0xFFFF and propB1 0x1FF00-0x1FFFF)

 Dump, reconfigure, reflash (i.e. ‘the fun stuff’) is all protected by an

authentication and authorization challenge-response system called Seed-Key

Exchange

 ISO 15765-2 aka ‘ISO-TP’ (PGN 0xDA00) (for UDS)

Other Things J1939 is for…

 ECU Firmware Reads

 ECU Parameter Reconfiguration

 ECU Diagnostics

 👆 The FUN stuff

 And of course also TRUCK stuff 👇

Body Control functions, Immobilizer Functions, ADAS, trailers,

brakes etc.

129

Protocol: UDS Seed-Key Exchange

130

131

UDS
 Unified Diagnostic Services – ISO 14229 ; on CAN: ISO 15765

 Used for nearly ALL vehicle Diagnostic Protocols

 You will learn a lot about it in other sessions today and tomorrow

 There are actions in UDS that are protected. To execute the action requires

authorization: e.g.

 Read memory

 Reflash ECUs

 Perform potentially dangerous maintenance operations

➢ aka ‘the fun stuff’

132

UDS Authorization

 Sometimes UDS is helpful; it will tell you that you need to authorize

 Negative Response Code : SecurityAccessDenied

 You’ll learn about these

 To authorize; unlock the current session with SecurityAccess Seed-Key Exchange

 ‘Session holder’ (server) emits a ‘seed’; ‘session user’ (client) returns a ‘key’

 Service 0x27 (replies on 0x67)

 Subfunction 0x05 for requestSeed / 0x06 for sendKey

 You’ll know more about these soon

133

Seed-Key Exchange
Seed-key exchange is a Challenge-Response Protocol

Only 16-bit space; so it might not fit our ideal characteristics of resisting known plaintext

forgery attacks

The ‘seed’ here is a challenge and the ‘key’ here is a response

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

134NB: J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

Daily J., COMVEC15, A Digital Forensics Perspective …

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

135

15 Minute Hands-On:

Derive the Seed-Key Routines
1 2 3

18DAF100#0467055b31
18DA00F1#0427065c31
18DAF100#0467053632
18DA00F1#0427063732
18DAF100#0467052c31
18DA00F1#0427062d31
18DAF100#0467053839
18DA00F1#0427063939

18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435

18DAF100#0467052c31
18DA00F1#0427060005
18DAF100#0467053132
18DA00F1#0427061d06
18DAF100#0467053732
18DA00F1#0427061b06
18DAF100#0467053137
18DA00F1#0427061d03

136

Aside: Attack Trees

137

Aside: Attack Tree Notation

138

Aside: Tools For Attack Trees (& TARAs)

 $$:

 Word Smart-Art

 Visio

 OmniGraffle

 Also purpose-built commercial products

 Free:

 Graphviz DOT: e.g. security-decision-trees-graphviz by Kelly

Shortridge 🤩

 Any indented text

 Any mind-mapping SW; e.g. Mindmup (at right) using mindmup-as-
attack-trees

https://github.com/swagitda/security-decision-trees-graphviz
https://github.com/BenGardiner/mindmup-as-attack-trees

139

Recall: Attacking Seed-Key Exchange

Attack Goals:

a)Get a security session (small-scale)

b)‘Pirate’ a security session (large-scale)

For a):

If you do have diagnostic SW:

• Use a middleperson attack; done.

If you don’t:

• Then it is equivalent to pirating a session ; which we’ll expand on…

140

b) Pirating it…

1.0 'Pirate’

a SecuritySession

(0x27)

AND

Obtain Diag SW (3.0)

OR

4.0 LUT extraction

4.1 RE algorithm and params
from Diag SW

AND

Obtain ECU FW (3.2)

3.3 RE algorithm and params
from ECU FW

AND

Obtain captures of 0x27 (3.4)

OR

4.2 Solve for unknowns in a know
formula

4.3 Retry seeds until repeated
from capture

2.3 Brute-force

2.4 Glitch past the check

141

Look Up Table (LUT) Extraction (4.0)
16-bit seed-key exchange means a 128KiB LUT.

 Great example by John Maag of how to lift a challenge-response routine.

“

 Impersonate brake module using previously logged exchanges

 Specifically, respond over CAN to software requests how the module would

 Give brake software all possible seeds and record the corresponding keys

“

John Maag, NMFTA HVCS Nov 2017

142

Reverse Engineering

the Algorithm & Key

from Maintenance SW

(4.1)

Use a decompiler or

disassembler to identify the code

responsible for computing the

key sent in response to a seed

Daily J., COMVEC15, A Digital Forensics Perspective …

143

’Brute-Force’ (2.3)

 If you have no diagnostic SW, you can’t lift the
correct algorithm through LUT or RE.

 You can try every possible 16-bit value for each
seed received.

 Worst case is 16bit x 16bit (700 weeks at 10 requests
per second)

 But many seed generators won’t cover all 16bits

 Can you control the seed? (e.g. hard-reset)

 single seed: (110 minutes at 10 requests per second)

Daily J., COMVEC15, A Digital Forensics Perspective …

144

‘Crypto’

145

Solve for Unknown Constants in a Known

Algorithm (4.2)

 If you have diagnostic software for a related ECU
and access to ~10 captures of seed-key exchange

 Solve for unknown constants in known formula.

https://www.enigmatos.com/2018/03/14/hacking-cars-with-z3-2/

https://www.enigmatos.com/2018/03/14/hacking-cars-with-z3-2/

146

Glitch Past (2.4)

 If you have no diagnostic SW…

 If you can setup low-jitter triggering based on key reply CAN frame

 You can try glitching the module at delays from that trigger.

 Maybe use simple power analysis to refine the delay

 Large search space; tricky setup (removing caps etc.)

 c.f. Riscure’s recent work on demoing this at RSA/CHV

sendKey (0x06)
frame on CAN Bus

CAN Controller of
ECU Receives

sendKey (0x06)

ECU Receives
sendKey (0x06)

ECU compares key
to expected

ECU Unlocks
Security Session (or

not)

Observable /

Trigger

=

147

Protocol: Seed-Key Exchange

Section Summary

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

 SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

 If you have diagnostic software:

 Reverse the key algorithm & parameters from PC software

 Black-box / Lift the key algorithm & parameters

 If you have ECU firmware:

 Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

 If you have some captures of successful SecurityAccess:

 Solve for unknowns in a known formula from related ECUs

 Retry seeds until a match occurs with one in the captures

 If you have only the ECU:

 Brute-force (can you control the seed?)

 Get some captures (e.g. service center) – see above

 Glitch past the check – be amazing

148

Protocol: Seed-Key Exchange

Section Summary

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

 SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

 If you have diagnostic software:

 Reverse the key algorithm & parameters from PC software

 Black-box / Lift the key algorithm & parameters

 If you have ECU firmware:

 Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

 If you have some captures of successful SecurityAccess:

 Solve for unknowns in a known formula from related ECUs

 Retry seeds until a match occurs with one in the captures

 If you have only the ECU:

 Brute-force (can you control the seed?)

 Get some captures (e.g. service center) – see above

 Glitch past the check – be amazing

Closing

149

Summary

 ’Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

 ’Crypto is hard’ →means correct crypto is hard to break, if you have only the capture

of communications

 Crypto building blocks don’t get broken very often (given only the capture of comms)

 Crypto protocols get broken

 Crypto gets broken via side-channels

 Crypto gets broken by compromise of execution environment

 You can middleperson-attack TLS/SSL

 You can lift/reverse/solve/brute-force Seed-Key Exchange

151

Resources for Continued Learning

• Cryptopals (CTF), T. Ptacek et. al.

• Let’s Play with Crypto (Pres.), Ange Albertini

• Any and all SO answers by Thomas Pornin

• Security Engineering (Book), Ross Anderson

• PotatoSec Crypto Puzzle Challenges

• POC||GTFO (Journal), mirror

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://stackoverflow.com/users/254279/thomas-pornin?tab=answers
https://www.cl.cam.ac.uk/~rja14/book.html
https://www.potatopla.net/crypto/
https://www.alchemistowl.org/pocorgtfo/

