
Connecting next generation talent with the heavy duty industry to
keep vehicles secure

August 16-20, 2021 | Detroit (USA)

Android Security
Workshop

Eduardo Novella
(NowSecure)

● Introduction Android
Android OS internals

Automotive Android OS

● Android Reverse Engineering
Static & Dynamic analysis

Tools used for RE-ing Android apps

● CyberTruck Challenge CrackMe Walkthrough
Vulnerable keyless Android app to wirelessly unlock vehicles with your mobile

“Mobile Keyless Remote System”

● Takeaways
Things learned after this workshop

Outline
Main ideas

● Mobile Security Research Engineer @ NowSecure

○ Focused on Android Reverse Engineering

● Previously (Reverse Engineering)

○ Android mobile security: cloud-based payments (HCE wallets), DRM and TEE solutions
○ Embedded security : smartcards, smartmeter, PayTV, HCE, routers, any hardened IoT dev
○ Crypto: side-channel & fault injection attacks (hw). Whitebox cryptography (sw)

● Personal @ enovella.github.io

○ Based in Europe

○ Chess player, swimmer and nature lover

$ whoami
"I stay with problems longer"

https://enovella.github.io/

Architecture

Android OS

● Android OS developed by Google
○ Based on Linux (Open Source) with kernel- and user-space
○ Hardware manufacturers, app developers, AOSP contributors
○ Components:

■ Android Runtime (Dalvik VM vs ART)
■ Native core libraries (c/c++/rust), Linux Kernel, Java API
■ System apps, HAL, third-party applications

● Application Sandbox - least privilege
○ Each app operates in its own isolated environment (sandbox)
○ Unix-style permission model
○ Data directory /data/data/package-name-app/
○ App data sharing via IPC (content providers)
○ UID - User Identity. Greater than 10000 for normal apps

Architecture

Automotive Android OS (AAOS)

● Android Automotive OS (AAOS) - “Android for Cars”
○ Infotainment system built into cars by carmakers
○ Interface designed for car screens
○ Components

■ In-vehicle Infotainment (IVI)
■ Google Automotive Services (GAS)
■ Vehicle Map Service (VMS)
■ Exterior View System (EVS)
■ Heating, ventilation & AC (HVAC)

○ OEM receives access to GAS via a partnership with Google
● Android Auto

○ A framework to connect your Android phone to car

Attack Surface

Android Threat Modelling
● Physical access

○ USB port (ADB). Developer Options enabled
○ Hardware ports (UART, JTAG,...) for debugging purposes
○ Pull out proprietary apps from automotive vendors
○ Jailbreak from kiosk
○ ...

● Vendor’s Applications
○ Identify critical assets within the app

■ IP, crypto, databases, Android shared preferences
■ Proprietary protocols and crypto

○ Network protocols (MITM), tracking, GPS spoofing
○ App security can be tampered with
○ Firmware updates for automotive components
○ ...

● Non-physical access
○ Wireless (WiFi, Bluetooth, NFC, LTE, Baseband)
○ Vulnerabilities on old Android OS
○ Web server accessible via browser
○ ...

Tools

Android Reverse Engineering

● Java/Kotlin → Dalvik Bytecode
○ JADX
○ Bytecode Viewer
○ JEB
○ Apktool
○ Baksmali/smali

● Native
○ IDA Pro
○ Radare2
○ Ghidra
○ Binary Ninja
○ Hopper

● Dynamic Binary Instrumentation
○ Frida
○ Xposed

● Source code
○ Android Studio + AVD emulators

Most powerful OSS tools

Android Reverse Engineering

● JADX
○ DEX decompiler

● Ghidra
○ Native decompiler

● Radare2
○ Unix-like reverse engineering framework

● Frida
○ Dynamic Binary Instrumentation

● R2frida
○ The ultimate static analysis on dynamic steroids

● APK

○ APK == ZIP

○ Manifest XML

○ Assets folder

○ Resources folder

● Reverse Engineering

○ APK

○ Native code

○ DEX bytecode

APK
Android Application Packaging (APK)

Static Analysis

Android RE

● Static Analysis
○ Understand app logic
○ Find security bugs
○ Reveal critical assets
○ Locate places to perform dynamic analysis

● Steps
○ Decompile binary code → Pseudo code (readable)
○ Navigate codebase & search for

■ strings, crypto keys, passwords, network traffic, ..
■ obfuscation

● Rename variables, functions (if stripped)
○ Tamper with the app integrity

■ Include your modifications
● enable logging
● disable checks
● GPS locations

Dynamic Analysis

Android Reverse Engineering

● Dynamic Binary Instrumentation (DBI)
 “A method of analyzing the behavior of a binary application at runtime through the injection of instrumentation code”

○ Access process memory (stack,heap,code,...)
○ Hook, trace, intercept functions
○ Change return values, variables, globals, function args,...
○ Overwrite function implementations while app is running
○ Call arbitrary functions from imported classes
○ Find object instances on the heap
○ Bypass client-side security checks

embedded injected

Process Injection via Frida

Android Reverse Engineering

Can you unlock this uncrackable car keyless system?

Android CyberTruck Crackme

https://github.com/nowsecure/cybertruckchallenge19

https://github.com/nowsecure/cybertruckchallenge19

● Mobile CrackMe simulating an app capable of unlocking vehicles via bluetooth

○ Material: https://github.com/nowsecure/cybertruckchallenge19

○ Android CTF-like challenge (3 static + 3 dynamic flags = 6 flags in total)

○ Run it in Android emulator

○ 1h workshop + extra time

○ Enable the TamperProof switch if you’re brave :-)

● Rules

○ Don’t share flags with other mates
○ Up to you how to solve the challenges

Android CyberTruck Challenge Crackme
“Unlock your truck with your Android”

https://github.com/nowsecure/cybertruckchallenge19

Mobile CTF
Let’s
play!

Takeaways

● Secure vehicles can be hard → Security by obscurity is not the solution
● Focus on the design and ensure strong key hierarchy → Client-side apps will be eventually compromised
● Follow security guidelines → OWASP MSTG
● Minimum privilege principle → Reduce the attack surface
● Do not hardcode secrets within your code → Use encryption at rest
● Use hardware-backed keystore to keep secrets instead of SW-based implementations
● Protect IP → Code hardening (obfuscation, anti-tampering, anti-rooting, anti-debugging, ...)
● Ensure proper randomness source → Use strong & secure crypto
● Implement multi-factor authentication (MFA)
● Enforce certificate pinning to slow down MITM attacks
● Bug bounty your application before you got hacked
● Employ hardened OS features → TrustZone (TEE)
● Google security → SafetyNet

Where to search

Links

● Radare2 && Frida (NowSecure)

● The Mobile Security Testing Guide (MSTG)
● Awesome Mobile CTFs
● Awesome Frida && Frida CodeShare
● MOBISEC lectures
● Android App Reverse Engineering 101
● RedNaga Security
● Gio’s blog
● A bunch of mobile security blog posts on the Internet

https://rada.re/r/
https://www.frida.re/
https://www.nowsecure.com/
https://github.com/OWASP/owasp-mstg
https://github.com/xtiankisutsa/awesome-mobile-CTF
https://github.com/dweinstein/awesome-frida
https://codeshare.frida.re/
https://mobisec.reyammer.io/slides
https://maddiestone.github.io/AndroidAppRE/
https://rednaga.io/
http://www.giovanni-rocca.com/

THANK YOU!
Q&A

Eduardo Novella
Mobile Security Research Engineer

enovella@nowsecure.com

@NowSecureMobile
@enovella_

Special thanks to

@RomainKraft @fs0c131y @Hexploitable

for providing feedback on the crackme

