August 2021

Justin Montalbano

Kate Vajda

Wireless CyberTruck 2021

Introduction - Background

Justin Montalbano

- Reverse Engineering / Web / Networking / Mobile
- Automotive / Healthcare / Startups
- DefCON Car Hacking Village Lead

Kate Vajda

- Vulnerabilities / Detections / Reverse Engineering
- Industrial Control Systems / Utilities

Outline

- Fundamentals of Wireless
- Wi-Fi (2.4 GHz / 5 GHz)
- Bluetooth (2.4 GHz)
- Cellular
- GPS
- Software Defined Radio (SDR)

Fundamentals of Wireless

- What is a Radio?
- What is a Radio Frequency (RF)?

What is a Radio? – Components

- Antenna
- Transmitter
- Receiver
- Transceiver (combination of Receiver and Transmitter)

What is RF? – Electromagnetic Radiation

Radio Waves - A form of electromagnetic radiation with an identified frequency which range from 3 kHz to 300 GHz.

What is RF? – Applications

UNITED STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM

SERVICE EXAMPLE DESCRIPTION
Press FRED Capital Loss

Din dati in gaphi angi-pointri tin pettopi oʻla laki oʻf loppor, Mondon cell y te RC ad XID, A ada, kuy ni moqfadi-sifar il apeni, iz formis azi teati daqte mais da laki

ere eine d13 destes. U.S. DEPARTMENT OF COMMERCE Vational Telecommunications and Information Administr Office of Spectrum Management JANUARY 2016

utaria U.S. Streaman Prints Office U.S. S. Hill Ruthigue DF was chill No. 2001

What is RF? – Radio Frequency Signal

A wireless electromagnetic signal used as a form of telecommunication.

Modulation - The process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal

Amplitude Modulation (AM)

Frequency Modulation (FM)

What is RF? – Amplitude Shift-Keying (ASK)

A form of amplitude modulation that represents digital data as variations in the amplitude of a carrier wave.

What is RF? – Frequency Shift-Keying (FSK)

A frequency modulation scheme in which digital information is transmitted through discrete frequency changes of a carrier signal.

What is RF? – Fast Fourier Transform (FFT)

An algorithm that samples a signal over a period of time (or space) and divides it into its frequency components

Fundamentals of Wireless

• FCCID Lookup

FCCID Lookup – Physical Inspection

What to look for? - FCC ID / IMEI #

FCCID Lookup – Research

Type FCC ID # into Google:

FCC ID RI70M12030-210

FCC ID RI7OM12030-210

Telit Communications S.p.A. 2G/3.5G wireless module OM12030-210

FCC ID- / Telit Communications S.p.A.- / OM12030-210

An FCC ID is the product ID assigned by the FCC to identify wireless products in the market. The FCC chooses 3 or 5 character "Grantee" codes to identify the business that created the product. For example, the grantee code for FCC ID: RI7OM12030-210 is RI7. The remaining characters of the FCC ID, OM12030-210, are often associated with the product model, but they can be random. These letters are chosen by the applicant. In addition to the application, the FCC also publishes *internal images, external images, user manuals, and test results* for wireless devices. They can be under the "exhibits" tab below.

Purchase on Amazon: 2G/3.5G wireless module

Application: 2G/3.5G wireless module			
Equipment Class: PCB - PCS Licensed Transmitter			
Alternate Sources: FCC.gov FCC.report			
Registered By: Telit Communications S.p.A RI7 (Italy) you@youremail.com Subscribe			

App #	Purpose	Date	Unique ID
1	Original Equipment	2015-03-20	8MFJbqVwPl39vas0/NNnPQ==
2	Original Equipment	2015-03-20	x2khAL4/b1vXSiLxSdpPJg==

FCCID Look-up – Research

OM12030/210

Internal pictures

Operating Frequencies

Frequency Range	Power Output	Tolerance
824.2-848.8 MHz	344.3 mW	1ppm
826.4-846.6 MHz	199.9 mW	1ppm
826.4-846.6 MHz	124.2 mW	1ppm
1.7124-1.7526 GHz	89.5 mW	1ppm
1.7124-1.7526 GHz	98.2 mW	1ppm
1.8502-1.9098 GHz	535.8 mW	1ppm
1.8502-1.9098 GHz	209.9 mW	1ppm
1.8524-1.9076 GHz	184.9 mW	1ppm
1.8524-1.9076 GHz	114.8 mW	1ppm

Wi-Fi (2.4 GHz / 5 GHz)

- Overview
- DEMO: Wi-Fi Pineapple Overview

Wi-Fi Overview

Common Attacks:

- Deauth attacks
- Evil Twin Attack
- WPA2 MITM Attack
- WEP IV Attack

Rel. Year	1999	2007	2009	2013	2020	2023(?)
Freq. Band	2.4 GHz	2.4 GHz	2.4 + 5 GHz	5 GHz	2.4 + 5 + 6 GHz (6E)	2.4 + 5 + 6 GHz
Bandwidth	20 MHz	20 MHz	40 MHz	80 MHz, 160 MHz	80 MHz, 160 MHz	240 MHz, 320 MHz

Wi-Fi Pineapple Overview

\$100 device for hacking Wi-Fi https://www.wifipineapple.com/

WiFi Pineapple NANO The ultimate WiFi pentest companion, in your pocket.

6th generation WiFi Pineapple software featuring PineAP, web interface and modules

Dual discrete 2.4 GHz b/g/n Atheros radios

Up to 400 mW per radio with included antennas

Integrated Power over USB Ethernet Plug

Memory expansion via Micro SD (up to 200 GB)

Optional mobile EDC Tactical case and battery

USB 2.0 Host accessory expansion port

WiFi Pineapple TETRA The amplified, dual-band (2.4/5 GHz) powerhouse.

6th generation WiFi Pineapple software featuring PineAP, web interface and modules

Dual discrete 2.4/5 GHz a/b/g/n Atheros 2:2 MIMO radios

4 onboard Skybridge amplifiers

Up to 800 mW per radio with included antennas

Integrated Power over USB Ethernet Port

Integrated Power over USB Serial Port

Onboard NAND Flash (2 GB)

USB 2.0 Host and RJ45 Ethernet Ports

DEMO – Wi-Fi Pineapple Overview

Bluetooth (2.4 GHz - ISM)

- Overview
- DEMO:

Gathering info on Bluetooth devices

Bluetooth – Personal Area Networks

- Master (central) scan for other devices, and initiate connection.
- Slave (peripheral) advertise and wait for connections.

Bluetooth – Automotive

Information that can be saved on your car when you connect via Bluetooth:

- GPS history
- Device name.
- Address book.
- In-car internet search history.
- Music-streaming login, such as Spotify or Pandora
- Call log and text messages if you use hands-free calling
- WiFi identifiers

Bluetooth – Tools

Ubertooth One (\$140) https://greatscottgadgets.com/ubertoothone/

UD100 (\$40) http://www.senanetworks.com/ud100-g03.html

Bluetooth Demo

• Gathering info on Bluetooth devices

Step 1 - Install and run bettercap

git clone github.com/bettercap/bettercap.git

apt-get install golang libpcap-dev libusb-1.0-0-dev libnetfilter-queue-dev

make build

make install

./bettercap

Step 2 - Manual - help

sudo ./bettercap

bettercap v2.31.1 (built for linux amd64 with go1.13.8) [type 'help' for a list of commands]

	help MODULE :	List available commands or show module specific help if no module name is provided.
	active :	Show information about active modules.
	quit :	Close the session and exit.
	<pre>sleep SECONDS :</pre>	Sleep for the given amount of seconds.
	get NAME :	Get the value of variable NAME, use * alone for all, or NAME* as a wildcard.
	set NAME VALUE :	Set the VALUE of variable NAME.
read	VARIABLE PROMPT :	Show a PROMPT to ask the user for input that will be saved inside VARIABLE.
	clear :	Clear the screen.
	include CAPLET :	Load and run this caplet in the current session.
	! COMMAND :	Execute a shell command and print its output.
	alias MAC NAME :	Assign an alias to a given endpoint given its MAC address.

Modules

any.proxy > not running api.rest > not running arp.spoof > not running ble.recon > not running c2 > not running caplets > not running dhcp6.spoof > not running dns.spoof > not running events.stream > running gps > not running

Step 3 - Listening service - ble.recon on

192.168.168.0/24 > 192.168.168.84	»	ble.recon on
192.168.168.0/24 > 192.168.168.84	»	[23:43:10] [ble.device.new] new BLE device detected as 5D:4F:DE:B4:CA:D4 (Apple, Inc.) -54 dBm.
192.168.168.0/24 > 192.168.168.84	»	[23:43:10] [ble.device.new] new BLE device detected as 54:90:A1:EA:B7:1A (Apple, Inc.) -57 dBm.
192.168.168.0/24 > 192.168.168.84	»	[23:43:11] [ble.device.new] new BLE device detected as 76:8B:7E:EE:6F:39 (Apple, Inc.) -65 dBm.
192.168.168.0/24 > 192.168.168.84	»	[23:43:12] [ble.device.new] new BLE device detected as F7:EB:ED:0D:C1:4C -45 dBm.
192.168.168.0/24 > 192.168.168.84	»	ble.show

RSSI 🔺	МАС	Vendor	Flags	Connect	Seen
-42 dBm -53 dBm -53 dBm -71 dBm	f7:eb:ed:0d:c1:4c 54:90:a1:ea:b7:1a 5d:4f:de:b4:ca:d4 76:8b:7e:ee:6f:39	Apple, Inc. Apple, Inc. Apple, Inc.	LE + BR/EDR (controller) BR/EDR Not Supported BR/EDR Not Supported LE + BR/EDR (controller), LE + BR/EDR (host)	* * * *	23:43:27 23:43:29 23:43:28 23:43:29

Step 4 - Enumerate bluetooth - ble.enum

192.168.168.0/24 > 192.168.168.84 » ble.enum 62:fc:a9:22:ba:41 [23:58:33] [sys.log] [inf] ble.recon connecting to 62:fc:a9:22:ba:41 ... 192.168.168.0/24 > 192.168.168.84 »

Handles	Service > Characteristics	Properties	Data
0001 -> 0005 0003 0005	Generic Access (1800) Device Name (2a00) Appearance (2a01)	READ READ	worktop Generic Computer
0006 -> 0009 0008	Generic Attribute (1801) Service Changed (2a05)	READ, INDICATE	0000000
0010 -> 0014 0012 0014	Device Information (180a) Manufacturer Name String (2a29) Model Number String (2a24)	READ READ	Apple Inc MacBookPro15,1
0020 -> 0023 0022	Apple Continuity Service (d0611e78bbb44591a5f8487910ae4366) 8667556c9a374c9184ed54ee27d90049	WRITE, NOTIFY	
0024 -> 0027 0026	9fa480e0496745429390d343dc5d04ae af0badb15b9943cd917aa77bc549e3cc	WRITE, NOTIFY	

ble.write <mac> <uuid> <value>

Handles	Service > Characteristics	Properties	Data
0001 -> 0005 0003 0005	Generic Access (1800) Device Name (2a00) Appearance (2a01)	READ READ	<mark>worktop</mark> Generic Computer
0006 -> 0009 0008	Generic Attribute (1801) Service Changed (2a05)	READ, INDICATE	0000000
0010 -> 0014 0012 0014	Device Information (180a) Manufacturer Name String (2a29) Model Number String (2a24)	READ READ	Apple Inc MacBookPro15,1
0020 -> 0023 0022	Apple Continuity Service (d0611e78bbb44591a5f8487910ae4366) 8667556c9a374c9184ed54ee27d90049	WRITE, NOTIFY	
0024 -> 0027 0026	9fa480e0496745429390d343dc5d04ae af0badb15b9943cd917aa77bc549e3cc	WRITE, NOTIFY	

192.168.168.0/24 > 192.168.168.84 » ble.write 40:b6:1f:33:1f:86 8667556c9a374c9184ed54ee27d90049 fffffffffffffff [00:15:36] [sys.log] [inf] ble.recon connecting to 40:b6:1f:33:1f:86 ... 192.168.168.0/24 > 192.168.168.84 » [00:15:37] [sys.log] [err] ble.recon error while writing: insufficient authentication 192.168.168.0/24 > 192.168.168.84 »

Cellular

FrequenciesTools

Cellular - Frequencies

	2G Frequ		30	6 Frequenci	es			
Frequency	800 MHz	850 MHz	1900 MHz	Frequency	850 MHz	1700 MHz	1900 MHz	2100 MHz
Band	SMR	CLR	PCS	Band	CLR	AWS	PCS	AWS

					4G Freq	uencies						
Frequency	L700 MHz	L700 MHz	U700 MHz	800 MHz	850 MHz	1700/2100 MHz	1900 MHz	2300 MHz	2500 MHz	3500 MHz	5200 MHz	5700 MHz
Band	12,17	29	13	26	5	4,66	2,25	30	41	48	252	255

5G has a very large range of frequencies. Could not fit on this page. LINK

Cellular - Tools

- Cell site simulator
- SDR BladeRF with YatesBTS
- SDR Ettus Research USRP
- IMSI Catcher (StingRay)

Rohde & Schwarz Cell Site Simulator

Stingray (IMSI Catcher)

GPS

L1 Band (1575.42 MHz) L2 Band (1227.6 MHz) L5 Band (11476.45 MHz)

- Overview
- Spoofing
- DEMO: GPS Spoofing

GPS - **Overview**

- Launch-1978 / Full Coverage-1994 / United States Government
- Multiple Bands / Multiple Frequencies
- Other Satellite Navigation Systems:
 - GLONASS (Launch-1982 / Full Coverage-1995 / Russian)
 - Galileo (Launch-2011 / Full Coverage-2021 / European Union)
 - BeiDou (Launch-2000 / Full Coverage-2020 / China)

Band	Frequency	Description
L1	1575.42 MHz	Used for civilian technologies (cellular, cars, trucks, etc.)
L2	1227.60 MHz	Used for civilian technologies (cellular, cars, trucks, etc.)
L3	1381.05 MHz	Used for nuclear detonation (NUDET) detection.
L4	1379.913 MHz	Being studied for additional ionospheric correction
L5	11476.45 MHz	Proposed for use as a civilian safety-of-life (SoL) signal.

GPS - Spoofing

GPS Demo

• Spoofing GPS Satellites

Step 1 - Install bladeRF

\$ sudo apt-get install libusb-1.0-0-dev libusb-1.0-0 build-essential cmake libncurses5-dev libtecla1 libtecla1-dev pkg-config git wget

\$ git clone https://github.com/Nuand/bladeRF.git ./bladeRF

\$ cd ./bladeRF

\$ cd host/

\$ mkdir build

\$ cd build

\$ cmake ../

\$ make && sudo make install && sudo ldconfig

Step 2 - Install gps-sdr-sim

\$ git clone https://github.com/osqzss/gps-sdr-sim.git

\$ gcc gpssim.c -lm -03 -o gps-sdr-sim

\$ cd gps-sdr-sim/

Step 3 - Download latest GNSS archive

Create login:

https://urs.earthdata.nasa.gov/users/new

Download latest files:

https://cddis.nasa.gov/archive/gnss/data/daily/2021/brdc/

And copy to directory

\$ cp ~/Downloads/<latest> ~/gps-sdr-sim/

Step 4 - Select a spot

Step 4 - Generate constellations

./gps-sdr-sim -e brdc2270.21n -l 51.2752981,30.2131308,15z

jus	tin@cyl	pertruc	<pre>ck:~/projects</pre>	/gps-sdr-sim
Usi	ng stat	tic loo	cation mode.	
Sta	rt time	e = 202	21/08/15,00:0	0:00 (2171:0
Dur	ation =	= 300.0	[sec]	
01	23.1	9.0	24592663.6	4.1
10	299.4	5.6	25132834.7	4.5
12	255.9	33.7	22315927.2	2.5
14	73.5	17.5	23926540.6	3.4
15	209.6	25.8	23317757.9	2.9
17	58.3	43.1	22164233.7	2.1
19	97.3	60.5	20687450.5	1.7
24	277.7	71.0	20318053.2	1.6
25	257.6	2.8	25291287.6	4.8
28	69.8	35.1	22845238.3	2.4
32	330.4	6.9	25176101.3	4.4
Tim	e into	run =	78.5	

Step 4 - Spoof

\$ bladeRF-cli -s bladerf.script

justin@cybertruck:~/projects/gps-sdr-sim\$ bladeRF-cli -s bladerf.script

For best results, it is not recommended to set both RX and TX to the same frequency. Instead, consider offsetting them by at least 1 MHz and mixing digitally.

For the above reason, 'set frequency <value>` is deprecated and scheduled for removal in future bladeRF-cli versions.

Please use 'set frequency rx' and 'set frequency tx' to configure channels individually.

RX1 Frequency: 1575420000 Hz (Range: [237500000, 380000000]) TX1 Frequency: 1575420000 Hz (Range: [237500000, 380000000])

Setting RX1 sample rate - req: 2600000 0/1Hz, actual: 2600000 0/1Hz Setting TX1 sample rate - req: 2600000 0/1Hz, actual: 2600000 0/1Hz

 RX1 Bandwidth:
 2500000 Hz (Range: [1500000, 28000000])

 TX1 Bandwidth:
 2500000 Hz (Range: [1500000, 28000000])

Setting TX1 txvga1 gain to -25 dB txvga1: -25 dB (Range: [-35, -4])

LPF tuning module: 23

TX LPF I filter: 33 TX LPF Q filter: 33

RX LPF I filter: 30 RX LPF Q filter: 30

RX VGA2 DC reference module: 23 RX VGA2 stage 1, I channel: 41 RX VGA2 stage 1, Q channel: 41 RX VGA2 stage 2, I channel: 27 RX VGA2 stage 2, Q channel: 27

TX DC I: Value = -272, Error = 0.414 TX DC Q: Value = 352, Error = 0.400

GPS - Spoofing Demo

Software Defined Radio (SDR)

- Overview
- Equipment
- GQRX Overview
- DEMO/EXERCISE: Find a Radio Station
- DEMO/EXERCISE: Find a Key Fob Signal
- GNU Radio Overview
- DEMO/EXERCISE: Record and Replay Key Fob Signal
- DEMO/EXERCISE: Decode Key Fob Signal

SDR - Overview

A radio system where components that have been traditionally implemented in hardware are instead implemented in software.

Extremely costly 10+ years ago

Defined by IEEE P1900.1

• "Radio in which some or all of the physical layer functions are software defined"

SDR - Equipment

HackRF One (\$300) Half-duplex transceiver 1MHz to 6GHz / 20 MHz bandwidth https://greatscottgadgets.com/hackrf/

RTL-SDR (\$25) DVB-T TV tuner based on RTL2832U 500KHz-1.75GHz / 5MHz bandwidth https://www.rtl-sdr.com/

Ettus USRP (\$5,000+) High-performance, scalable SDR 10MHz to 6GHz / 40-160 MHz bandwidth ettus.com/product/category/USRP-X-Series

YARD Stick One (\$120) Half-duplex transceiver 300-348MHz / 391-464MHz / 782-928MHz https://greatscottgadgets.com/yardstickone/

BladeRF (\$420+) Full-Duplex transceiver 300MHz to 3.8GHz / 50MHz+ bandwidth https://www.nuand.com

Proxmark (\$300) Read RFID / Spoof reader or tag 125KHz / 134KHz / 127.66KHz / 13.56MHz hackerwarehouse.com/product/proxmark3-rd v2-kit/

Software Defined Radio (SDR)

• GQRX Overview

GQRX Overview - Configuration

Two important settings:

- 1. Device: hackrf=[model#]
- 2. Input Rate: 8000000 (8 Mega samples / second)

Device	HackRF HackRF One 6	5! -
Device string	hackrf=6590cf	
Input rate	8000000	-
Decimation	None	Ŧ
Sample rate	8.000 Msps	
Bandwidth	0.000000 MHz	4
LNB LO	0.000000 MHz	+
dio output		
Device	Default	Ŧ
Sample rate	48 kHz	*

GQRX Overview – Main Screen

GQRX Overview – FFT Settings

Four common settings:

- FFT Size Sets resolution of waterfall and frequency view. Higher = Better Higher = More CPU
- **2.** Peak Detect Highlights and measures peak signals
- 3. Peak Hold Keep outline of highest waves
- **4.** Zoom Zooms in on specified frequency

GQRX Overview – Peak Detect and Peak Hold

GQRX Overview – Input Settings (the HackRF)

Three common settings:

- 1. RF Gain On or Off (14 dB is somewhat misleading) On = Better signals, but more noise
- IF Gain and BB Gain Generally leave them around 16 dB or 24 dB Higher = louder signals, but <u>much</u> more noise
- 3. DC Remove Remove annoying spike in the middle screen

Input controls		ð×
LNB LO	0.000000 MHz	*
🗌 Hardware AG	с	
RF gain		
IF gain		
BB gain		
🗌 Swap I/Q	🗌 No limits	
DC remove	IQ balance	
Freq. correction	0.0 ppm	•
Antenna	TX/RX	*

GQRX Overview – Example Signal

Signal = solid spike

This example is a handheld transceiver

Notice: the signal is so loud it has "harmonics", signals repeated nearby

Note: if a signal is louder than <u>5 dB</u> it can damage the HackRF (not -5 dB)

Keep away from powerful RF sources Towers, powerful radios, directional antennas, etc... Turn RF gain down to compensate for loud signals

GQRX Overview – Demodulate Signal

Click on a signal to highlight it and play it over sound

Receiver options control the demodulation

Important Settings:

- 1. Filter Width Set the size of the signal Look this up, or guess
- Mode Raw IQ, AM, Narrow FM, Wide FM (WFM)...etc. Play with these settings to find the right sounding option Raw IQ is usually best to use when exporting to other programs
- **3.** Squelch Don't play static noise, only signals Select an area with no signal and click the "A" to automatically set

Receiver Optior	IS		0 🕱
-3,5	87.2	200	kHz
Hardware freq	:	2426	.000000 MHz
Filter width	Normal	-	
Filter shape	Normal	\$	
Mode	Narrow FM	\$	
AGC	Fast	÷	
Squelch	-72	.6 dBFS 🛟	A
Noise blanker	NB1	NB2	

GQRX Overview – Other Signals

www.sigidwiki.com - a great source for active signals

Signal Type	Description	Frequency	Mode	Modulation	Bandwidth	Waterfall Image
<u>2G CDMA (IS-95)</u>	CDMA-One also known as IS-95, was the first ever cellular standard technology based off of CDMA. It is now defunct due to GSM and later classes of cellular techs replacing it.	850 MHz	AM	QPSK	1.228 MHz	
<u>3G WCDMA</u>	WCDMA, known primarily as 3G mobile, is a family of 3G data protocols used to send voice, text and signaling data to smart phones and other wireless devices.	824 MHz — 2,100 MHz	RAW, AM	QAM, QPSK, CDMA	4.2 MHz	
<u>49MHz RC Car</u> <u>Controller</u>	The sound of an RC controller signal from an old amphibious toy car	49.2 MHz	USB			

GQRX Overview – Other Resources

<u>sigidwiki.com</u> - Resource for signal identification <u>radioreference.com</u> - Database of radio stations, repeaters, and communication frequencies <u>websdr.org</u> - Tune into SDRs around the world, or broadcast yours to the world <u>w1hkj.com/FldigiHelp-3.21/Modes</u> - Ham Radio Digital Signals <u>arrl.org/getting-licensed</u> - Get licensed to broadcast around the world <u>rtl-sdr.com</u> - Keep up to date with SDR news and experiments <u>cgran.org</u> - Huge collection of advanced GNURadio blocks

SDR Demo

• Find a Radio Station / Key Fob Signal

Step 1 - Find a Radio Station / Key Fob

Plugin hackRF or other SDR Ensure hackRF is connected

> justin@cybertruck:~\$ hackrf_info hackrf_info version: unknown libhackrf version: unknown (0.5) Found HackRF Index: 0 Serial number: 0000000000000000909864c8345517cf Board ID Number: 2 (HackRF One) Firmware Version: 2015.07.2 (API:1.00) Part ID Number: 0xa000cb3c 0x00554757

Step 2 - Find a Radio Station / Key Fob

Start up GQRX

\$ gqrx

justin@cybertruck:~\$ gqrx Controlport disabled No user supplied config file. Using "default.conf" gr-osmosdr 0.2.0.0 (0.2.0) gnuradio 3.8.1.0 built-in source types: file osmosdr fcd rtl rtl_tcp uhd miri hackrf bladerf rfsp ace airspy airspyhf soapy redpitaya freesrp gr::log :WARN: file_source0 - file size is not a multiple of item size FM demod gain: 3.05577 Resampling audio 96000 -> 48000 IQ DCR alpha: 1.04166e-05 Using audio backend: auto BookmarksFile is /home/justin/.config/gqrx/bookmarks.csv [INFO] [UHD] linux; GNU C++ version 9.2.1 20200304; Boost_107100; UHD_3.15.0.0-2

Step 3 - Find a Radio Station / Key Fob

Setup GQRX for hackRF Set <u>Device</u> to <u>hackrf</u> Set <u>Input Rate</u> to 8000000

Confi	ure I/O devices	
Connig		
I/Q input		
Device	HackRF HackRF One	•
Device string	hackrf=5517cf	
Input rate	8000000	•
Decimation	None	•
Sample rate	8.000 Msps	
Bandwidth	0.000000 MHz	*
LNB LO	0.000000 MHz	+
Audio output		
Device	Default	•
Sample rate	48 kHz	•
	🛛 🔁 Cancel	OK
		2.

Step 4 - Find a Radio Station / Key Fob

Change Mode to WFM (stereo)

Tune to your favorite radio station

Click the 'Play' icon in the upper left hand corner

Step 5 - Find a Radio Station / Key Fob

Turn up the gain (volume)

Select an area next to frequency, click the 'A' button next to <u>Squelch</u> Go back to frequency, Squelch should help remove some noise

Software Defined Radio (SDR)

GNU Radio Overview

GNU Radio – Starting Page

GNU Radio – Function Blocks

Must Have Blocks:

- Source
- Sink

Most Common Blocks:

- Filters
- Instrumentation (aka measurements)
- Modems (Modulators and Demodulators)
- Variables and Controls

[Instrumentation]

▼ [QT]

QT GUI Bercurve Sink QT GUI Constellation Sink **QT GUI Frequency Sink QT GUI Histogram Sink QT GUI Number Sink** QT GUI Sink **QT GUI Time Raster Sink QT GUI Time Sink QT GUI Vector Sink** QT GUI Waterfall Sink

GNU Radio – GQRX Style Waterfall

SDR Demo

• Record and Replay Key Fob Signal

GNU Radio – Start up

\$ gnuradio-companion

justin@cybertruck:~/Downloads\$ gnuradio-companion <<< Welcome to GNU Radio Companion 3.8.1.0 >>>

Block paths: /usr/share/gnuradio/grc/blocks

Create a new project

Edit values

			Properties: Variable
General	Advanc	ed	Documentation
Id		samp	o_rate
Value		4e6	

Options

Id: basic_replay

title: Basic Replay

Variable sample_rate: 4e6

	Properties: Options 🛛 😣
General Advan	ced Documentation
Id	basic_replay
Title	Basic replay
Author	your name here
Copyright	
Description	
Canvas Size	
Output Language	Python 🔻
Generate Options	QT GUI 👻
Run	
Max Number of Output	0
Realtime Scheduling	Off -
QSS Theme	
	OK Cancel Apply

Id: hw_freq

Value: 433e6

_'	> UHD	
+	 Variables 	
+	Function Probe	
×	Parameter	
×	Struct Variable	
	Tag Object	
	Variable	
	Variable Config	
	Video	

			Properties: Variable
General	Advar	nced	Documentation
<u>lc</u>	1	hw_f	req
Valu	Value		6

Basic capture to file

Execute

Right-click -> disable

Replay

SDR Demo

• Decode Key Fob Signal

GNU Radio – Decoding Key Fob Signal

GNU Radio – Decoding Key Fob Signal

nc 127.0.0.1 1245 | xxd | grep 101

00002480:	0100	0001	0100	0101	0001	0001	0100	0001	
00002490:	0001	0001	0000	0101	0001	0100	0100	0100	
000024a0:	0001	0001	0000	0100	0001	0001	0001	0101	
00002500:	0100	0100	0100	0101	0001	0100	0001	0100	
00002520:	0000	0100	0101	0001	0100	0100	0001	0000	
00002530:	0100	0101	0001	0001	0100	0100	0101	0000	
00002540:	0100	0100	0100	0100	0001	0000	0101	0000	
00002550:	0101	0001	0001	0001	0001	0000	0101	0001	
00002560:	0100	0100	0001	0000	0101	0001	0001	0100	
00002570:	0001	0100	0101	0001	0000	0100	0001	0100	
00002580:	0100	0100	0100	0101	0001	0100	0100	0100	
00002590:	0101	0000	0100	0101	0001	0100	0100	0100	
000025a0:	0101	0000	0101	0001	0001	0100	0100	0100	
000025b0:	0101	0100	0001	0100	0001	0000	0101	0001	
000025c0:	0100	0001	0001	0100	0101	0000	0100	0101	
000025e0:	0100	0001	0000	0101	0000	0100	0100	0001	
000025f0:	0100	0101	0000	0101	0100	0001	0001	0001	
00002610:	0000	0101	0100	0100	0100	0001	0000	0101	
00002620:	0001	0001	0001	0100	0100	0101	0000	0101	
00002640:	0100	0001	0100	0101	0001	0001	0100	0001	
00002650:	0001	0001	0000	0101	0001	0100	0100	0100	
00002660:	0001	0001	0000	0100	0001	0001	0001	0101	
00002670:	0101	0000	0000	0000	0000	0000	0000	0000	

Thank you! - Happy Hacking

