
Connecting next generation talent with the heavy duty industry to
keep vehicles secure

June 20-24, 2022 | Michigan (USA)

Android Security
Workshop

Eduardo Novella
(NowSecure)

$ git clone https://github.com/nowsecure/cybertruckchallenge22.git

$ whereis
Material

● Mobile Security Research Engineer @ NowSecure

○ Focused on Android Reverse Engineering

● Previously (Reverse Engineering)

○ Android mobile security: cloud-based payments (HCE wallets), DRM and TEE solutions
○ Embedded security : smartcards, smart meters, Pay TV, HCE, routers, any hardened IoT dev
○ Crypto: side-channel & fault injection attacks (hw). Whitebox cryptography (sw)

● Background

○ IT : sw- and hw- security, crypto, embedded, networks
○ CTF player occasionally

● Personal @ enovella.github.io

○ Based in Europe (ES, UK, NL)

○ Chess player, swimmer and nature lover (soon to be father)

$ whoami
"I stay with problems longer"

https://enovella.github.io/

● Android Introduction

Android Security Internals

Automotive Android OS
Threat Modeling & Bug Hunting

● Android Reverse Engineering

Open-Source Mobile RE Tools

Static Analysis
Dynamic Analysis (Frida)
Network Analysis

● Hands-On: Android Challenge

Keyless Android app to wirelessly unlock vehicles with your mobile

“Mobile Keyless Remote System”

● Takeaways - QA

Outline
Main ideas

Architecture

Android OS

● Android OS developed by Google
○ Based on Linux (Open Source) with “Androidisms”

○ Components:
■ Linux Kernel

● Binder - driver used for IPC
● Native Userspace - init process - Zygote

■ Hardware Abstraction Layer (HAL)
■ Native core libraries (C/C++/Rust)
■ Android Runtime - Dalvik VM (jit) vs ART (aot)
■ Java API Framework
■ Applications

● System Apps (RO partition mounted as /system)
● User-installed Apps (RW partition mounted as /data)

App Security

Android Security Model

● Application Sandboxing
○ Each app operates in its own isolated environment
○ Unix-style permission model
○ Data directory /data/data/package-name-app/
○ App data sharing via IPC (content providers)
○ UID (User Identity). Greater than 10000 for normal apps
○ Code signing inherited from Java JAR “same origin policy”

■ Each application signed with self-signed dev-certs
● Permissions

○ Defined AndroidManifest.xml inside APK
○ Run- and installation-time approval
○ Allow sms, microphone, network, gps, nfc,

● Components
○ Activity - UI screen
○ Broadcast receivers - snd/rcv data from/to apps
○ Content providers - enable sharing data between apps
○ Services - run in background

Architecture

Automotive Android OS (AAOS)

● Android Auto - App
○ A framework to connect your Android phone to cars

● Android Automotive OS (AAOS) - “Android for Cars”
○ Infotainment system built into cars by carmakers
○ Interface designed for car screens
○ Components

■ In-vehicle Infotainment (IVI) system

■ Google Automotive Services (GAS)
■ Vehicle Map Service (VMS)
■ Exterior View System (EVS)
■ Heating, ventilation & AC (HVAC)

○ OEM receives access to GAS via a partnership with Google

https://en.wikipedia.org/wiki/Android_Automotive

Hardware Security

Android Security Model

● ARM TrustZone - Trusted Execution Environment (TEE)
○ Hardware-enforced isolation built in SoC
○ Secure area of main processor
○ Isolate Normal- (NWd) and Secure- world (SWd)
○ Non-Secure and Secure state kept in HW reg
○ NWd ← Secure Monitor Call (SMC) → SWd
○ TEE OS executed right after BootROM
○ Hardware-backed KeyStore
○ Protect critical assets:

■ Crypto, TRNG, Biometrics, Payment, DRM, Boot Integrity

● Google Titan M Chip (Secure Element)
○ Separate secure chipset manufactured for Pixel devices
○ Tamper-resistant hardware against side channel attacks
○ Enforces Android Verified Boot (AVB)
○ Stronger KeyStore: Android “StrongBox” Keymaster
○ Side channels attacks - BH 2021

we are here

https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf

Device Security

Android Security Model

● Bootloader
○ Unlocked

■ SuperSU - Magisk
○ Locked

■ Privilege escalation
● Symlink/logic bugs
● OEM Framework bugs
● Kernel bugs

● Exploits
○ StageFright - Android 2.2 - 5.1.1
○ TowelRoot - Futex bug - Android devices w/ kernels 3.15.x
○ Pingpong - UAF in linux socket
○ Dirty Cow - Kernel race condition on Copy-on-Write (Cow)
○ Bluefrag - Bluetooth zeroclick RCE on Android 8/9
○ OEM backdoors - OnePlus “Angela”
○ Dirty Pipe - Android 12 kernel >= 5.10 (Pixel 6 - Samsung S22)

http://theroot.ninja/PAE.pdf
https://gsec.hitb.org/materials/sg2015/D2%20-%20Ryan%20Welton%20and%20Marco%20Grassi%20-%20Current%20State%20of%20Android%20Privilege%20Escalation.pdf

Attack Surface

Threat Modeling

● Physical access
○ USB port (ADB). Developer Options enabled
○ Hardware ports for debugging purposes
○ Vendor proprietary apps
○ Kiosk escape

● Vendor’s Applications
○ Identify critical assets within the app

■ IP, crypto, databases, shared pref
■ Proprietary protocols and crypto

○ Network protocols (MITM), tracking, GPS spoofing
○ Firmware updates

● Non-physical access
○ Wireless (WiFi, Bluetooth, NFC, LTE, Baseband)
○ Vulnerabilities on old Android OS
○ Web server accessible via browser

Vulnerabilities

Android App Bug Hunting

● Insecure connections (auth over network)
● Cryptography and Authentication

○ Hardcoded secrets, Oauth tokens
○ Plaintext databases

● Unprotected App Components (activity, content providers,...)
● Private File Access

○ Arbitrary File Read/Overwrite - Path Traversal - ACE
○ ZIP Path Traversal
○ SQLi / Path Traversal on exported content providers

● Android Deeplinks
○ XSS using WebViews
○ Open Redirect
○ Account Takeover
○ Sensitive Data Exposure

● More

https://academy.nowsecure.com/mobile-app-bug-bounties
https://drive.google.com/file/d/1IOhRBYUAqGWE-MigR8hyENYe_2LA1tgo/view

ADB
Android Debug Bridge - SDK Platform tools

● APK

○ APK => ZIP

○ AndroidManifest.xml

○ Assets folder

○ Resources folder

● Reverse Engineering

○ APK

○ Native code

○ DEX bytecode

APK
Android Application Packaging (APK)

Static Analysis

Android RE

● Static Analysis
○ Understand app logic
○ Find security bugs
○ Reveal critical assets
○ Discover spots to perform dynamic analysis

● Steps
○ Decompile binary code → Pseudo code (readable)
○ Navigate codebase & search for

■ strings, crypto keys, passwords, network traffic, ..
■ obfuscation

● Rename variables, functions (if stripped)
○ Tamper with the app integrity

■ Intercept TLS/SSL traffic w/ certificate pinning
■ Include your modifications

● enable logging
● disable checks
● GPS locations

Tools

Android Reverse Engineering

● Dalvik Bytecode → Smali assembly → Java (Kotlin)
○ JADX
○ Bytecode Viewer

○ JEB
○ Apktool
○ Baksmali/smali

● Native Binary code → Pseudocode
○ IDA Pro
○ Radare2
○ Ghidra
○ Binary Ninja
○ Hopper

● Dynamic Binary Instrumentation → Hooking
○ Frida
○ Xposed

● Source code
○ Android Studio + AVD emulators
○ VS Code

Most powerful OSS tools

Android Reverse Engineering

● JADX - DEX decompiler

● Ghidra - Native decompiler

● Radare2 - Unix-like reverse engineering framework

● Frida - Dynamic Binary Instrumentation

● R2Frida - The ultimate static analysis on dynamic steroids

● Apktool - APK RE tool

● Mitmproxy - An interactive HTTPS proxy

Dynamic Analysis

Android Reverse Engineering

● Dynamic Binary Instrumentation (DBI) toolkit
 “A method of analyzing the behavior of a binary application at runtime through the injection of instrumentation code”

○ Injects a JS V8 engine in your target app
○ Supports Linux, MacOS, Windows, Android, iOS, QNX, MIPS
○ Access process memory
○ Hook, trace, intercept functions
○ Change return values, variables, globals, function args,...
○ Call arbitrary functions from imported classes
○ Overwrite function implementations
○ Memory carving on the stack/heap
○ Bypass client-side security checks

embedded injected

Process Injection via Frida

Android Reverse Engineering

Source - MOBISEC

● Launch Frida server on Android Emulator

○ $ adb push frida-server-android-x86_64 /data/local/tmp/frida-server

○ $ adb shell

■ generic_x86_64:/ $ su

■ generic_x86_64:/ # cd /data/local/tmp/

■ generic_x86_64:/data/local/tmp # chmod +x frida-server

■ generic_x86_64:/data/local/tmp # ./frida-server -D

● Spawn/attach to a process from host

○ $ frida-ps -Uai

○ $ r2 frida://spawn/usb//org.nowsecure.cybertruck

Android Reverse Engineering
Frida setup

https://frida.re/docs/examples/android/

● Frida Gadget - Run on jailed devices without root privileges

○ Repackage APK injecting a SO and loading it from Java

Android Reverse Engineering
Frida Gadget Injection

https://frida.re/docs/gadget/

 R2Frida

Android Reverse Engineering

radare2 io_frida frida target

● Radare2 tool on

top of the rest

● r2frida IO plugin ● Frida provides JS

APIs to interact

with target

● Target process

instrumented by

Frida and JS

$ r2 frida://attach/usb//re.target.app
[0x00000000]> :?

Remote -
Local

 R2Frida

Android Reverse Engineering

 Radare2

Android Reverse Engineering

● Forwarding: regular / transparent proxy

○ Burp proxy / Mitmproxy

● Hooking: BoringSSL/OpenSSL read/write data into sockets before encryption

○ Frida-powered Fritap

● From >= Android 7.0, apps does not trust user-certs unless specified in Network Security Config (XML)

○ Adding self-signed certificate to system-certs will bypass this mitigation

■ Systemless root bypasses the read-only /system partitions (Magisk modules)

Network Analysis
MITM

https://github.com/fkie-cad/friTap/raw/main/assets/friTapOSDFConwebinar.pdf

● Certificate/ Public Key Pinning - Associate host name to an expected public key certificate

○ Proxy + Frida unpinning scripts

■ Hooking Java/Kotlin SDKs (Tool: Objection)

○ Frida-powered Fritap

■ Hooking TLS native APIs

Network Analysis
MITM

https://github.com/fkie-cad/friTap/raw/main/assets/friTapOSDFConwebinar.pdf

Can you unlock this uncrackable car keyless system?

CyberTruck Challenge App

https://github.com/nowsecure/cybertruckchallenge22

https://github.com/nowsecure/cybertruckchallenge19

● Android app capable of unlocking vehicles via bluetooth

○ Material: https://github.com/nowsecure/cybertruckchallenge22

■ folder : ./apk/cybertruck19.apk

○ Android challenge (3 static + 3 dynamic flags = 6 flags in total)

○ Run the Android app in Android emulator (Dockerized) or rooted physical device

○ Enable the TamperProof switch if time left

CyberTruck Challenge App
“Unlock your truck with your Android”

https://github.com/nowsecure/cybertruckchallenge19

CyberTruck Challenge Android Setup
“Unlock your truck with your Android”

Docker tools

Radare2
Frida
Jadx

Apktool
Mitmproxy

Docker emu x64

Android 11

- Frida-server as root
- CyberTruck App

Linux host

ADB

Native tools

Ghidra
JADX

Android Studio
…

ADB

 Shared /tmp

● Material: https://github.com/nowsecure/cybertruckchallenge22:

○ $ git clone https://github.com/nowsecure/cybertruckchallenge22.git

○ $ cd docker

● Docker Tools - Android RE

○ Build: $ make build-local OR $ make build (if you’re away from CyberNAS)

○ Run: $ make shell-local OR $ make shell (if you’re away from CyberNAS)

● Docker Emulator - Android 11 x64

○ Build: $ make build-emu-local OR $ make build-emu (if you’re away from CyberNAS)

○ Run: $ make shell-emu-local OR $ make shell-emu (if you’re away from CyberNAS)

$ avdmanager create avd -n first_avd --abi google_apis/x86_64 -k "system-images;android-30;google_apis;x86_64"

$ emulator -avd first_avd -no-window -no-audio & # Press enter if you got questions

$ adb devices

CyberTruck Challenge Android Setup
“Unlock your truck with your Android”

https://github.com/nowsecure/cybertruckchallenge19

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

cybertruck2:5000/cbtruck latest 65dae343cf4c 13 hours ago 3.18GB

cybertruck2:5000/androidemu latest 719db0146c62 11 months ago 5.67GB

CyberTruck Challenge Android Setup
“Unlock your truck with your Android”

Android Challenge

Let’s
play!

Takeaways
● Keep your software up-to-date
● Secure vehicles can be hard → Security by obscurity is not the solution
● Focus on the design and ensure strong key hierarchy → Client-side apps will be eventually compromised
● Follow security guidelines → OWASP MSTG
● Minimum privilege principle → Reduce the attack surface
● Do not hardcode secrets within your code → Use encryption at rest
● Employ hardened OS features→ TrustZone (TEE)

○ Use hardware-backed keystore instead of SW-based implementations to keep secrets
● Ensure proper randomness source → Use robust & secure crypto
● Implement multi-factor authentication (MFA)
● Protect IP → Code hardening (Enable ProGuard)
● Enforce certificate pinning to slow down MITM attacks
● Bug bounty your application before you got hacked
● Google security → SafetyNet - Play Integrity API

https://owasp.org/www-project-mobile-security-testing-guide/

Where to search

Links

● Radare2 && Frida (NowSecure)
● The Mobile Security Testing Guide (MSTG)
● MOBISEC lectures

● Android App Reverse Engineering 101
● Awesome Frida && Frida CodeShare

● RedNaga Security - Awesome Mobile CTFs

● A bunch of mobile security blog posts on the Internet

https://rada.re/r/
https://www.frida.re/
https://www.nowsecure.com/
https://github.com/OWASP/owasp-mstg
https://mobisec.reyammer.io/slides
https://maddiestone.github.io/AndroidAppRE/
https://github.com/dweinstein/awesome-frida
https://codeshare.frida.re/
https://rednaga.io/
https://github.com/xtiankisutsa/awesome-mobile-CTF

THANK YOU!
Q&A

Eduardo Novella
Mobile Security Research Engineer

enovella@nowsecure.com

@NowSecureMobile
@enovella_

Special thanks to

@RomainKraft @fs0c131y @Hexploitable

for providing feedback on the crackme

