
ENUMERATING
VULNERABILITIES IN AN ECU

HANNAH SILVA

ABOUT ME

• Senior Security Consultant at Leviathan Security

• Application security enthusiast

• 5 years of heavy vehicle security research experience

• Instructor and mentor for CyberTruck Challenge

• CHV volunteer

• Bachelor’s in Computer Science

SECURITY ASSESSMENT ON AN ECU

• Threat model & attack surface
• Remote attack vectors

• Severity of compromise

• Get connected

• Discovery phase
• Features, proprietary protocols, diagnostics…

• Testing all functionality that accepts input
• Authentication/authorization on sensitive functions?

• Input validation and handling

• Logic bypass

TESTING FRAMEWORK

• TruckDevil is an open-source testing
framework where collaborators can add
various kinds of modules

• It’s in early development

github.com/LittleBlondeDevil/TruckDevil

SET UP SOCKETCAN

$ sudo ip link show # should report can0

$ sudo ip link set can0 down

$ sudo ip link set can0 type can bitrate [250000 or 500000]

$ sudo ip link set can0 up

INSTALL TRUCKDEVIL

$ sudo apt install python3.10-venv

$ git clone https://github.com/LittleBlondeDevil/TruckDevil.git

$ cd TruckDevil

$ python3 –mvenv venv

$ source ./venv/bin/activate

$ python3 setup.py install

$ cd truckdevil

$ python3 truckdevil.py

https://github.com/LittleBlondeDevil/TruckDevil.git

THE TARGET ECU

THREAT MODELING

• Exploitability
• Remote attack vectors (telematics systems, ELDs, over-the-air programming)

• Mitigations (isolated network, gateway, authentication)

• Impact of compromise
• Confidentiality, integrity, availability

TARGET ECU THREAT MODEL

• Manufacturer’s website lists convenience features of their vehicles
• Built-in telematics devices standard on all newer vehicles

• Advanced remote diagnostics

• Over-the-air programming

• Fleet health maintenance

• TPMS reporting

TARGET ECU THREAT MODEL

• Remote attack vectors are likely, and possibly on whole fleets of vehicles

• The impact of vulnerabilities found on the ECU could be critical, ranging from information
disclosure to vehicle takeover

GETTING CONNECTED

• Isolate ECU on a test bench for initial discovery and testing
• Power the ECU with a power supply, and connect to data pins (e.g., CAN high/low)

• Attach to other signal pins as needed for testing various conditions (e.g., wheel speed sensor)

• Place ECU in a truck for testing node-to-node communication, gateways, and features only
enabled when vehicle is in motion (Note: dangerous! Use a simulator if possible!)

DISCOVERY

• Address and Name

• Status messages

• Proprietary messages

• Diagnostics

• Determine ECU’s address

• Look for messages in the proprietary range

• Look for the presence of UDS for diagnostics

• Example of what the tool would find on an ECU that does offer UDS

• What is the ECU’s reboot message?

• Are there any engineering or diagnostic tools available that interact with the ECU?
• Often these expose functionality for reading/writing parameters and firmware

• I found several tools sold from the manufacturer that can reprogram blank modules, read
parameters, perform diagnostics, data log, etc.

• beware sketchy free versions; these are usually old or don’t have all the features and probably contain
malware

• Just buy the < $500 product key or get one as part of the assessment

• Before connecting, record a baseline so you know what messages the ECU sends on a
regular interval

• Then record all the traffic that occurs upon connecting with the tool

• While recording, press the “Activate COM Link” button in the diagnostic tool

• Perform a passive scan in ECU discovery to determine the diagnostic tool’s address

• Review the recorded log file for communications from 0xF9

• Record the same connection again, but filter out only comms between the target ECU
and the diagnostic tool

• The tool sends a message with PGN 0xFFDD
from the proprietary range

• Note 1: this PGN was not found in the
baseline, so it’s very likely associated with
the diagnostic session:

• Note 2: the engine stops sending all other
messages – the initial message appeared to
put the ECU into a diagnostic session and
the last message stopped the session

• Then there’s a series of messages from F9
and 00 with the same 0xFFDD PGN

• This message is used to read various data
from the engine

• What do we know so far?

Uses proprietary PGN 0xFFDD for diagnostics

Start a diagnostic session:

Stop a diagnostic session:

Read data by identifier:

DYNAMIC TESTING

• Create test cases that challenge intended logic

Does it actually work the way you think it does?

• Let’s create a module in the testing framework to attempt to start our own diagnostic
session with the ECU

• It’s called “custom.py”

• Create various functions for
the actions you can take

• Module is called in a command loop to
easily accept user input and add more
functionality and test cases

• How do we write data?

• Other views of the tool include “parameter upgrades” and “blank module flashing”

• Step 1 – select “flash”

• Step 2 – turn off ignition

• Step 3 – turn ignition back on

• Step 4 – write all parameters

• While reviewing the log file, look for the ECU’s reboot message

• We know that writing occurred soon after this message

• Next, a diagnostic session is started

• Then identifier 0x420101 is requested,
which was not in the previous recording

• Next, the diagnostic tool writes all the
parameters to the ECU, incrementing some
count after each write

• Engine Serial Number flashed (ID 0x580000)

• Attempting to write the VIN by replaying

• Write VIN from recording:

• Write VIN with script:

00 = success!

02 = fail

• Why didn’t the write work?

It may be due to these 8 bytes of data that
differ between messages

• Simple replay does not work because an authentication mechanism has been
implemented to write values

• Can you trick the diagnostic tool into calculating the next key for you?

Current count = 0x06D4

Spoof the ECU and respond to diagnostic tool with the count of our choice to get key

• Replaying this Write VIN request to the ECU with the calculated key worked!

Problem: when I attempted to change one character in the VIN, it failed…

This means the calculate_key function probably also takes the data as input

• How is the key calculated?

-8 characters

-all upper-case letters (A-T only)

-repeats sometimes, but never for the same identifier

-appears random (no character appears significantly more often)

calculate_key(curr_count, data, ?) -> key

• The tool also allowed for individual parameters to be written to

• Modify “Remote Accelerator Enable
Switch” from Disabled to Enabled

• It used a static key “3030303030303030”

• 00 in 5th byte place instead of FF; this may
be “access type” or similar

• Some parameters are “customer programmable” and use a static key
• Max vehicle speed, setting brake/clutch/parking switches to be CAN-controlled or hardwired, low and

high idle engine speed, tire revolutions per mile, and many more…

• Others are protected by this key calculation
• We need to disassemble and debug the diagnostic tool while key is calculated

• What do we know so far?

Uses proprietary PGN 0xFFDD for diagnostics

Start a diagnostic session:

Stop a diagnostic session:

Read data by identifier:

Write data by identifier:

• Reverse engineering the tool

Change the file extension from .exe to .zip

• Reverse engineering the tool

Open [file].zip in jd-gui to decompile
into java and export

• Reverse engineering the tool

Found what looks like the code to write a parameter in BlankEngineImpl.java!

• Reverse engineering the tool

The previous code calls into a.a():

After a custom hashing algorithm to calculate a crc, the calculated key is returned:

• Reverse engineering the tool

• ecmSN = parameter 420101 = “081013440272060211024123”

• Reverse engineering the tool

• toolSn = “Blue” = 426C7565

• Reverse engineering the tool

• totalTt = the current count / parameter 560000

• Reverse engineering the tool

• cmd = 119

• Reverse engineering the tool

• block = first byte of parameter identifier

• Reverse engineering the tool

• level = second (and third) byte of parameter identifier

• Reverse engineering the tool

• data = the data to be written

• Reverse engineering the tool

Attempting to calculate the key from a previously recorded write command:

• Reverse engineering the tool

It worked!

• Reverse engineering the tool

Transferring the key calculation to our python script. Writing the VIN worked!

• Are there other service identifiers besides
read/write/diagnostic session control?

• What are the other proprietary messages?

(PGNs FF00-FFFF)

• Let’s fuzz these protocols!

Pros:

- will find cases of improper input validation and error handling

- limited setup and knowledge of protocol needed

- can run 24/7 with little oversight

Cons:

- cannot traverse all program paths

- only tests cases that would cause the ECU to crash

- fuzzing an ECU is a lot slower than fuzzing a native or remote application

• Fuzzing the protocol on PGN 0xFFDD

• Fuzzing all protocols that may be running in the proprietary range (PGN FF00-FFFF)

• When the fuzzer detects a crash, it looks like this:

• Other things to investigate:

- How does modifying various parameters affect the vehicle when running?

- In a running vehicle, what other data is the ECU normally accepting from other ECUs?

- The diagnostic tool also allows for running diagnostic tests

- The ECU is requesting PGN 0xFEE6 (date/time) from node 0x96

• Future work:

- Reverse engineer the diagnostic tools, set up a debugger, look for other possible admin
functionality

- Open the ECU, pull firmware off and look for hard-coded secrets and bugs, look for
remote vectors

- Acquire the manufacturer’s telematics unit, and perform additional work on the back-
end systems to find remote access vector to ECU

- Perform assessment on manufacturer’s full running vehicle, review any gateways or
mitigations that may be in place

Thank you!
Questions?

	Enumerating Vulnerabilities in an ecu
	About me	
	Security Assessment on an ECU	
	Testing framework	
	Set up socketcan
	Install Truckdevil
	The target ecu	
	Threat modeling
	Target ECU Threat Model
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Target ECU Threat Model
	Getting Connected	
	Slide Number 18
	Slide Number 19
	Discovery
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Dynamic testing
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79

