
Download Tools From SMB

• Please download tools at
\\CyberEvent\resources\BinaryDecompilation\So
ftware

– Copy everything under ./Ubuntu to your local machine
if you are using Ubuntu

– Copy everything under .\Windows to your local
machine if you are using Windows

– It mostly does not matter what OS you use. You can
reboot your laptop if you want to switch OS.

file://///cyberevent/resources/BinaryDecompilation/Software
file://///cyberevent/resources/BinaryDecompilation/Software

Binary Decompilation

CyberTruck Challenge 2023

Fish Wang

Who am I?

• Professor at Arizona State University (ASU)

– Publish papers on top-tier security venues

– Build open-source tools (e.g., angr)

– Enjoy debugging programs

• Core member of Shellphish
– Longest running team at DEF CON CTF

• Member of Nautilus Institute
– Running DEF CON CTF since 2022

3

How about Decompilation?

• My dream since I was eight

– I spent countless hours with OllyDbg

– Did not know IDA Pro (nor did it have a working
decompiler back then)

• Developed angr decompiler mostly by myself

– Standing on giants’ shoulders!

• Actively working on decompilation research

– Variable name inference

– Better structuring algorithms

– AI-powered quality-of-life improvements

4

Format

• Lecture

– Basic concepts

– How things work

– Research directions

• Hands-on challenges

– Various architectures

– They are easy!

• Expert suggestions

– What to decompile?

– How to do it fast?

5

TOOLS

Pick Your Poison

• For this event, you should only use locally
installable tools

– No cloud versions

• Try as many decompilers as you can

– When one does not work, switch to another

• See README.md for a list of recommended
decompilers

Download Tools From SMB

• Please download tools at
\\CyberEvent\resources\BinaryDecompilation\So
ftware

– Copy everything under ./Ubuntu to your local machine
if you are using Ubuntu

– Copy everything under .\Windows to your local
machine if you are using Windows

– It mostly does not matter what OS you use. You can
reboot your laptop if you want to switch OS.

file://///cyberevent/resources/BinaryDecompilation/Software
file://///cyberevent/resources/BinaryDecompilation/Software

IDA Pro

• IDA Pro is the state-of-the-art tool for reversing
– https://www.hex-rays.com/products/ida/

• It supports disassembling of binary programs

• Supports decompilation (Hex-Rays decompiler)

• Can be integrated with GDB and other debuggers

• It is a commercial product (expensive)
– A limited version is available for free

9

Binary Ninja

• Disassembler that supports sophisticated analysis
– https://binary.ninja/

• Includes multiple intermediate representations
– Easier to read than pure assembly code!

• It is a commercial product but:
– It has a demo version that can be used for free (with limitations)

– It is not very expensive (149$)

– It is way more stable than other competitors

10

Ghidra

• Open-source disassembler from NSA

– https://ghidra-sre.org/

– https://github.com/NationalSecurityAgency/ghidra

• Supports multiple architectures

• Supports decompilation (side-by-side view)

11

angr

• angr is an open-source binary analysis platform

– Disassembling

– Lifting to multiple IRs

– Symbolic execution

• Great support for Python scripting

• Has a GUI

– angr management

• Free

• Much easier to use

12

Decompiler Explorer

• There are a few other decompilers. How do we
pick one (or several) that we want to use?

• https://dogbolt.org

13

https://dogbolt.org/

Lab -1. BYOD

• Download and install various decompilers. Ensure
they run on your laptop.

14

Lab 0. Let’s Decompile

• Let’s start from some simple binaries

– Find the input to each binary that leads to “Congrats!”

15

Step 0: What to do?

• The very first task is understanding your goal

– Finding flags?

– Finding passwords?

– Negating a condition?

– Bypassing a protection?

16

Step 1: How is it implemented?

• Finding beacons

– Beacons are recognizable patterns during reverse
engineering

– Usually beacons are human-readable strings

– They can also be
• Common C constructs (switch-case)

• API calls

17

Step 2. Understanding Logic

• What logic is implemented in the program?

– Top-down
• Understand the logic by reading source code line after line,

starting from the main function or the entry point of the binary

– Bottom-up
• Understand the logic by reading relevant source code around

the beacons you care about

– Making the decompiled code more readable as you go
• Rename variables

• Rename functions

• Add comments

• Retype variables, functions, and function calls

18

Step 3. Reflection

• Reflection is extremely important during reverse
engineering

– “How would I implement this feature if I were the
programmer?”

– “How would I protect this function if I were the
programmer?”

– “What mistakes would I make if I were the
programmer?”

– It’s all about experience

19

WHY DECOMPILATION?

20

Why Decompilation?

• Debugging

– Things have gone wrong… but what and why?

• Understanding

– What is the logic? What is implemented?

• Editing

• Reusing

– Use the code/function/module/binary elsewhere
21

Debugging

• Admiral Grace Hopper (1906 –
1992)
– Her associates found a moth stuck

in a relay of Mark II and removed it.

– Grace Hopper first used the term
debugging in the context of
computing

22

Modern Debugging

• Finding (root) causes of errors, bugs, and failures
in computing systems

– Manually

– Automatically

• Debugging is difficult because software is
unnatural, complex, and sometimes functions in
unexpected ways

23

You are part of the problem!

24https://xkcd.com/1739/

Software Bugs are Prevalent

• “Commercial software typically has 20 to 30 bugs for
every 1,000 lines of code…”
– Wait what? One bug per 50 lines of code?

• What can we do to reduce the number of bugs?

• The fewer lines of code, the better
– “Code is liability” – Dr. Yan Shoshitaishvili

25

You are not the only problem

• Writing less code does not necessarily make your
software less complex
– Language interpreters

• CPython interpreter

• Java VM

– Language Runtime
• Java Runtime

• .Net CLR

– Libraries
• Glibc/uClibc/dietlibc/msvcrt/…

• Java libraries

• Python standard libraries

– What else?
26

Compiler Bugs

• Writing less code does not necessarily make your
software less complex

– Compilers
• GCC/Clang

• G++/Clang++

• Go

• Rust

• Crystal

• Julia

• Ocaml

• javac (JIT)

27

Are Compiler Bugs Rare?

28Sun et. al., Toward Understanding Compiler Bugs in GCC and LLVM, ISSTA’16

GCC 3.2 Bug Fixes

• https://gcc.gnu.org/gcc-3.2/changes.html

29

https://gcc.gnu.org/gcc-3.2/changes.html

VC6 Variable Scope Leaks

for (int myvar = 0; myvar < 10; myvar++);

if (1)

{

 int var2 = 16;

}

myvar = 0;

var2 = 0;

30https://stackoverflow.com/questions/4075276/variable-scope-in-c

Seemingly Compiler Bugs

• Null checks in C
if (ptr != NULL) {
 // it's a valid pointer!
 do_something(ptr);
}

– Accessing null pointers is considered an undefined
behavior in C

– Some C compilers introduced an optimization
-fdelete-null-pointer-checks

– if (ptr == NULL)
 error("Invalid driver");

31

Seemingly Compiler Bugs

• Null pointer checks are silently removed without
programmers realizing it…

• Worse, null pointers are actually dereferenceable
on some platforms (mostly embedded)

– Linux needs to run on many platforms

– Hence
https://bugzilla.redhat.com/show_bug.cgi?id=511185

– It was proposed in 2009!

32

https://bugzilla.redhat.com/show_bug.cgi?id=511185

Debugging & Reverse Engineering

• Debugging

– “What is wrong with my code?”

• Reverse engineering

– “What is wrong with this program?”

– “What is wrong with this binary?”

– Maybe it was my own code from six months ago…

• Decompilers make it much easier to understand
binary code (machine code)

33

DECOMPILATION 101

34

Disassembling

• Disassembling is the process of extracting the
assembly representation of a program by
analyzing its binary representation

• Disassemblers can be

– Linear
Linearly parse the instructions

– Recursive
Attempt to follow the execution flow of the program

47

Static Analysis

• Static analysis is a technique to analyze
programs that does not involve executing the
program

• Control-flow analysis
– Analyzes how the program execution is transferred

across the program components
• CFG: Control-flow graph

• Data-flow analysis
– Analyzes what data values can be assumed by

specific data stores (e.g., variables) at various
points in the program

48

Manual Decompilation

• Convert each instruction into its equivalent C
representation

– Do other languages work?

• Manually perform common compiler
optimizations

• Identify variables and their types

• Infer variable semantics

• Infer function semantics

49

Wait… Architectures? Platforms?

• Theoretically, a decompiler converts raw binary
code into a high-level representation

– So you don’t need to understand architecture-specific
or platform-specific details

• In reality…

– Decompilers frequently make mistakes

– Architecture- and platform-specific nuances are often
preserved

– Decompilers do not always work

50

Lab 1. A Challenge with Crypto

• csaw2012reversing.exe

– Find the correct decrypted flag.

51

Lab 2. A Bit More Crypto

• regme

– Find a correct flag that this binary takes.

52

What’s inside a decompiler?

• Many decompilers are open-sourced

• angr: angr/analyses/decompiler/decompiler.py

• Reko: src/Decompiler/Decompiler.cs

• Snowman: nc/core/MasterAnalyzer.cpp

53

Decompilation Techniques

• Control-flow graph recovery
– Differentiating between code and data

• (Optionally) Lift to a higher-level intermediate
representation

• Optimize the representation to eliminate redundant
accesses (e.g., register accesses)

• Recognize and replace compiler-specific idioms

• Control-flow structure analysis
– Recovering the high-level control-flow structures

• Variable recovery and type inferencing

• Pretty-printing of the representation into C

54

Lab 3. More Reversing

• ais3_crackme

– Find the correct flag that this binary takes.

55

Lab 4. Self-modifying Binary

• bonnie

– Find the correct flag that this binary takes.

56

Library Functions

• You don’t implement everything on your own.
Instead, we stand on the shoulders of giants

• Who are giants in the world of software
engineering? Libraries

• Library functions implement logic that can be
reused

– C: libc, pthread, math, libcrypto, …

– Python: re, logging, hashlib, …

– Qt: …

57

Understanding Library Calls

• Library calls have well-defined interfaces and
functionality. You do not need to guess what they
do!

– Man pages

– Library documentation

– GitHub

– Google

58

Invoking System Calls

• System calls are usually invoked through
libraries

– libc

• Linux/x86_64

– syscall
• rax contains the system call number

• What syscalls are there? Is there a reference?

– Here!
https://blog.rchapman.org/posts/Linux_System_Cal
l_Table_for_x86_64/

59

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

System Calls are OS-specific

• Platform-specific Linux syscall tables

60

Lab 5. Binary Patching

• pacman

– Identify the main function that implements the game
logic (the function with a large switch-case struct).

– The ghosts are moving too fast. Make them move
slower!

– Make pacman immortal!

61

	Slide 1: Download Tools From SMB
	Slide 2: Binary Decompilation
	Slide 3: Who am I?
	Slide 4: How about Decompilation?
	Slide 5: Format
	Slide 6: Tools
	Slide 7: Pick Your Poison
	Slide 8: Download Tools From SMB
	Slide 9: IDA Pro
	Slide 10: Binary Ninja
	Slide 11: Ghidra
	Slide 12: angr
	Slide 13: Decompiler Explorer
	Slide 14: Lab -1. BYOD
	Slide 15: Lab 0. Let’s Decompile
	Slide 16: Step 0: What to do?
	Slide 17: Step 1: How is it implemented?
	Slide 18: Step 2. Understanding Logic
	Slide 19: Step 3. Reflection
	Slide 20: Why Decompilation?
	Slide 21: Why Decompilation?
	Slide 22: Debugging
	Slide 23: Modern Debugging
	Slide 24: You are part of the problem!
	Slide 25: Software Bugs are Prevalent
	Slide 26: You are not the only problem
	Slide 27: Compiler Bugs
	Slide 28: Are Compiler Bugs Rare?
	Slide 29: GCC 3.2 Bug Fixes
	Slide 30: VC6 Variable Scope Leaks
	Slide 31: Seemingly Compiler Bugs
	Slide 32: Seemingly Compiler Bugs
	Slide 33: Debugging & Reverse Engineering
	Slide 34: Decompilation 101
	Slide 47: Disassembling
	Slide 48: Static Analysis
	Slide 49: Manual Decompilation
	Slide 50: Wait… Architectures? Platforms?
	Slide 51: Lab 1. A Challenge with Crypto
	Slide 52: Lab 2. A Bit More Crypto
	Slide 53: What’s inside a decompiler?
	Slide 54: Decompilation Techniques
	Slide 55: Lab 3. More Reversing
	Slide 56: Lab 4. Self-modifying Binary
	Slide 57: Library Functions
	Slide 58: Understanding Library Calls
	Slide 59: Invoking System Calls
	Slide 60: System Calls are OS-specific
	Slide 61: Lab 5. Binary Patching

