Download Tools From SMB

» Please download tools at
\\CyberEvent\resources\BinaryDecompilation\So
ftware

— Copy everything under ./Ubuntu to your local machine
if you are using Ubuntu

— Copy everything under \Windows to your local
machine if you are using Windows

— It mostly does not matter what OS you use. You can
reboot your laptop if you want to switch OS.


file://///cyberevent/resources/BinaryDecompilation/Software
file://///cyberevent/resources/BinaryDecompilation/Software

Binary Decompilation

CyberTruck Challenge 2023
Fish Wang



« Professor at Arizona State University (ASU)
— Publish papers on top-tier security venues
— Build open-source tools (e.g., angr)
— Enjoy debugging programs

 Core member of Shellphish 6“(((%(5((
— Longest running team at DEF CON CTF

« Member of Nautilus Institute
— Running DEF CON CTF since 2022



How about Decompilation?

« My dream since | was eight
— | spent countless hours with OllyDbg

— Did not know IDA Pro (nor did it have a working
decompiler back then)

* Developed angr decompiler mostly by myselt
— Standing on giants’ shoulders!

 Actively working on decompilation research
— Variable name inference

— Better structuring algorithms
— Al-powered quality-of-life improvements



Format

* Lecture » Hands-on challenges
— Basic concepts — Various architectures
— How things work — They are easy!

— Research directions

« EXpert suggestions

— What to decompile?
— How to do it fast?




TOOLS



Pick Your Poison

 For this event, you should only use locally
installable tools
— No cloud versions

« Try as many decompilers as you can
— When one does not work, switch to another

« See README.md for a list of recommended
decompilers



Download Tools From SMB

» Please download tools at
\\CyberEvent\resources\BinaryDecompilation\So
ftware

— Copy everything under ./Ubuntu to your local machine
if you are using Ubuntu

— Copy everything under \Windows to your local
machine if you are using Windows

— It mostly does not matter what OS you use. You can
reboot your laptop if you want to switch OS.


file://///cyberevent/resources/BinaryDecompilation/Software
file://///cyberevent/resources/BinaryDecompilation/Software

IDA Pro

* |DA Pro is the state-of-the-art tool for reversing
— https://www.hex-rays.com/products/ida/

[t supports disassembling of binary programs
« Supports decompilation (Hex-Rays decompiler)
« (Can be integrated with GDB and other debuggers

 |tis a commercial product (expensive)
— A limited version is available for free



Binary Ninja

« Disassembler that supports sophisticated analysis
— https://binary.ninja/

« |ncludes multiple intermediate representations
— Easier to read than pure assembly code!

* |tis a commercial product but:
— It has a demo version that can be used for free (with limitations)
— Itis not very expensive (149S)
— It is way more stable than other competitors




« Open-source disassembler from NSA

e SU
e SU

Nttps://ghidra-sre.org/
Nttps://github.com/NationalSecurityAgency/ghidra

pports multiple architectures

nports decompilation (side-by-side view)

11



angr

* angris an open-source binary analysis platform
— Disassembling
— Lifting to multiple IRs
— Symbolic execution

» Great support for Python scripting

e Has a GUI
— angr management

e Free
« Much easier to use




Decompiler Explorer

* There are a few other decompilers. How do we
pick one (or several) that we want to use?

» https://dogbolt.org

13


https://dogbolt.org/

Lab -1. BYOD

« Download and install various decompilers. Ensure
they run on your laptop.

14



Lab 0. Let's Decompile

« Let's start from some simple binaries
— Find the input to each binary that leads to “Congrats!”

15



Step 0: What to do?

* The very first task is understanding your goal
— Finding flags?
— Finding passwords?
— Negating a condition?
— Bypassing a protection?

16



Step 1: How is it implemented?

» Finding beacons

— Beacons are recognizable patterns during reverse
engineering

— Usually beacons are human-readable strings

— They can also be

« Common C constructs (switch-case)
« API calls

17



Step 2. Understanding Logic

« What logic is implemented in the program?

— Top-down

» Understand the logic by reading source code line after line,
starting from the main function or the entry point of the binary

— Bottom-up

« Understand the logic by reading relevant source code around
the beacons you care about

— Making the decompiled code more readable as you go
* Rename variables
* Rename functions
« Add comments
* Retype variables, functions, and function calls

18



Step 3. Reflection

« Reflection is extremely important during reverse
engineering

— "How would | implement this feature if | were the
programmer?”

— "How would | protect this function if | were the
programmer?”

— "What mistakes would | make if | were the
programmer?”’

— It's all about experience

19



WHY DECOMPILATION?



Why Decompilation?

« Debugging
— Things have gone wrong... but what and why?

« Understanding
— What is the logic? What is implemented?

e Editing

IWANT IT THAT WAY
« Reusing
— Use the code/function/module/binary elsewhere

21



Debugging

Admiral Grace Hopper (1906 —
1992)

— Her associates found a moth stuck
in a relay of Mark Il and removed it.

— Grace Hopper first used the term
debuggingin the context of
computing

Photo # NH 96566-KN (Color) First Computer “Bug”, 1947

0§ Onhom >w W 7 { 700 90; &«y7 oLs
/Y00 . ﬂv‘?-)- ~ o, (e A
137w (032 iﬁ%& ;-éﬂ 74/ 725 7('3

b3y 'Pyo £ 3 ,, (,y

RIS gt MWVJW#«J/

22



Modern Debugging

 Finding (root) causes of errors, bugs, and failures
INn computing systems
— Manually
— Automatically

« Debugging is difficult because software is
unnatural, complex, and sometimes functions in
unexpected ways

23



You are part of the problem!

WHAT ARE YOU WORKING ON?

PN

T CREATED LJHEN....

y

TRYING TO FiX THE PROBLEMS T
CREATED WHEN T TREED To Fix
THE PROBLEMS I CREATED \JHEN
LTRIEDTO AX THE PROBLEMS

https://xkcd.com/1739/

24



Software Bugs are Prevalent

« "Commercial software typically has 20 to 30 bugs for
every 1,000 lines of code...”
— Wait what? One bug per 50 lines of code?

« What can we do to reduce the number of bugs?

 The fewer lines of code, the better
— "Code is liability” — Dr. Yan Shoshitaishvili

25



You are not the only problem

« Writing less code does not necessarily make your
software less complex

— Language interpreters

« CPython interpreter
- Java VM

— Language Runtime
« Java Runtime
 Net CLR
— Libraries
» Glibc/uClibc/dietlibc/msvert/...

« Java libraries
» Python standard libraries

— What else?

26



Compiler Bugs

« Writing less code does not necessarily make your
software less complex

— Compilers
» GCC/Clang
« G++/Clang++
* GO
* Rust
« Crystal
« Julia
« Ocam|
* javac (JIT)

27



re Compiler Bugs Rare?

new 1312 313 314 40 411 42 43 4.4 4!5 4,6 47 T4l8
600 1 1 1 1 1 1 !
g;o A ﬁxed [ | | 1 | | |
= ---- rejected ! : \ ! ! !
A 40| — unconfirmed Moy | | : ; |
k] (LY Y | | | | l
5 £ Al "'|| |f'ii.'!‘q v, | | | ‘ |
A S T Y B S S & WV Ve .' Wi Ay 4 |’ I3
< - PV Sy sy Y 1 TR '|ll' f SN II‘ PN il
g 200 i !I\il L i \!\\', \/",i\_ (G ’| R A‘,\ JI\ L N 'l‘ i A A
= A i A i I i "vr.\,\,\,:\.,.l NI o S
l\l"v'\i o ,"'\_4 :’_,,,I 1 | N
e e | - 1 [ [ 1 |
0 ~ 1 = 11 < 1 Iq 1 = 1 e’l 1 < 1 11 lb, 1 L 1 S 1 Ll
2 o WS o S e o oS e, S o oS
S Y > S S N S S S 2y N S
& Y N\ ¥ & 0‘\ NG A &Y N N N
q® Q® Q® o® Q® Q® DN N N N Q® N
(a) GCC.
400 T
new e ot o'l 2lg 1 Salt o% N Bm T gm [Tam el T 3| |
(bno 300 ——— fixed 1 1 [ 1 1 1 1 1 1 1 [ 1 1 | ! | | 1 1 | 1
S i = 1 1 +—t 1 t 1 1 T t 1 1 t I 1 1 1 I 1 1 1 1
5 re-]eCted | [ [ 1 [ I 1 1 [ 1 1 1 1 1 1 1 1
- —— unconfirmed | [ 1 1 1 1 (BN 1 1 I 1 1 1 [ [ i 1 1 1
1) b 1 I (I 1 L1 1 1 1 I ! | | [ 1 | f |
& 200 (I o 1 | AR [ 1 [ ‘k 1 1 | 1 | lf [ 1 | |
[ I I I I I I I 1 1 1 I 1 J _\I, AR s I Al I I = 1 I
-g 100 [ [ | | | [ | N ' d WA [P TNE INTSVT
[ 1 1 1 1 [ 1 I 2 [ B G5 .
:Z:s r‘l 1 1 1 1 1 1 'Jh .L '_r\",-\.{ A Q "il‘ XAV , i
TP 1 [ Ny s
ISt AA e AN SN i
0 L1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 Il 1 L | [ | L 1
Qﬂ‘b» ~ A ‘b:\,‘o ’Q\ ,'DQ %) ‘bf}b» N nj\ o ) ,6\’ b’q'o 3 ,qu ’\,‘b < > 9)0 Q’Q [»’q'b} A
G G Y B B oI T B O BF B N B B Y
\) \) Q \) N N N N N N N N > > > > 34 > 3% £ 24 > Y
N A DN N N ® N 9 Q®© N N N Q® Q® N N N N Q® Q® QP

(b) LLVM
Figure 1: The overall evolution history of the bug repositories (in months). The plot filled in gray background shows the
new bug reports submitted every month. The blue dashdotted plot shows the number of bugs fixed every month. The red
dashed plot shows the number of bugs that are resolved as not fixed (e.g. invalid, duplicate, worksforme or wontfix). The
black curve shows the number of bug reports per month which have not been confirmed yet. Clearly there is an increasing
trend of unconfirmed bugs for LLVM.

Sun et. al., Toward Understanding Compiler Bugs in GCC and LLVM,ISSTA16 28



GCC 3.2 Bug Fixes

 https://gcc.gnu.org/gec-3.2/changes.html

Internal Compiler Errors (multi-platform)

3782: (ct++) -quiet -fstats produces a segmentation fault in cclplus

6440: (ct++) template specializations cause ICE

7050: (ct++) ICE on: (i ? get_string() : throw)

7741: ICE on conflicting types (make_decl_rtl in varasm.c)

7982: (c++) ICE due to infinite recursion (using STL set)

8068: exceedingly high (infinite) memory usage

8178: ICE with __builtin_ffs

8396: ICE in copy_to_mode_reg, in explow.c

8674: (ct++) ICE in cp_expr_size, in cp/cp-lang.c

9768: ICE when optimizing inline code at -02

9798: (c++) Infinite recursion (segfault) in cp/decl.c:push_using_directive with recursive using directives
9799: mismatching structure initializer with nested flexible array member: ICE
9928: ICE on duplicate enum declaration

10114: ICE in mem_loc_descriptor, in dwarf2out.c (affects sparc, alpha)
10352: ICE in find_reloads_toplev

10336: ICE with -Wunreachable-code

C/optimizer bugs:

8224: Incorrect joining of signed and unsigned division

8613: -02 produces wrong code with builtin strlen and postincrements

8828: gee reports some code is unreachable when it is not

9226: GCSE breaking argument passing

9853: miscompilation of non-constant structure initializer

9797: C99-style struct initializers are miscompiled

9967: Some standard C function calls should not be replaced when optimizing for size
10116: ce2: invalid merge of join_bb in the context of switch statements

10171: wrong code for inlined function

10175: -Wunreachable-code doesn't work for single lines

29


https://gcc.gnu.org/gcc-3.2/changes.html

VC6 Variable Scope Leaks

for (int myvar = 0; myvar < 10; myvar++);
if (1)
{
int var2 = 16;
}
myvar = 0;
var2 = 0;

30



Seemingly Compiler Bugs

 Null checksin C

if (ptr != NULL) {
// it's a valid pointer!
do_something(ptr) ;

}
— Accessing null pointers is considered an undefined

behavior in C

— Some C compilers introduced an optimization
-fdelete-null-pointer-checks

— if (ptr
erro id driver");

31



Seemingly Compiler Bugs

* Null pointer checks are silently removed without
programmers realizing it...

« Worse, null pointers are actually dereferenceable
on some platforms (mostly embedded)
— Linux needs to run on many platforms

— Hence
https://bugzilla.redhat.com/show_bug.cgi?id=511185

— It was proposed in 2009!

32


https://bugzilla.redhat.com/show_bug.cgi?id=511185

Debugging & Reverse Engineering

« Debugging

— "What is wrong with my code?”

» Reverse engineering
— "What is wrong with this program?”
— "What is wrong with this binary?”’
— Maybe it was my own code from six months ago...

« Decompilers make it much easier to understand
binary code (machine code)

33



DECOMPILATION 101



Disassembling

« Disassembling is the process of extracting the
assembly representation of a program by
analyzing its binary representation

e Disassemblers can be

— Linear
Linearly parse the instructions

— Recursive
Attempt to follow the execution flow of the program

a7



Static Analysis

 Static analysis is a technique to analyze
programs that does not involve executing the

program
« Control-flow analysis

— Analyzes how the program execution is transferred
across the program components

« CFG: Control-flow graph
« Data-flow analysis

— Analyzes what data values can be assumed by
specific data stores (e.g., variables) at various
points in the program

48



Manual Decompilation

« Convert each instruction into its equivalent C
representation
— Do other languages work?

« Manually perform common compiler
optimizations

* |dentify variables and their types

* Infer variable semantics

e |Infer function semantics

49



Wait... Architectures? Platforms?

« Theoretically, a decompiler converts raw binary
code into a high-level representation

— So you don't need to understand architecture-specific
or platform-specific details

* Inreality..
— Decompilers frequently make mistakes

— Architecture- and platform-specific nuances are often
preserved

— Decompilers do not always work

50



Lab 1. A Challenge with Crypto

« csaw2012reversing.exe
— Find the correct decrypted flag.

51



Lab 2. A Bit More Crypto

* regme
— Find a correct flag that this binary takes.

52



What's inside a decompiler?

« Many decompilers are open-sourced
* angr: angr/analyses/decompiler/decompiler.py

« Reko: src/Decompiler/Decompiler.cs
e Snowman: nc/core/MasterAnalyzer.cpp

53



Decompilation Techniques

« Control-flow graph recovery
— Differentiating between code and data

« (Optionally) Lift to a higher-level intermediate
representation

« Optimize the representation to eliminate redundant
accesses (e.qg., register accesses)

« Recognize and replace compiler-specific idioms

« Control-flow structure analysis
— Recovering the high-level control-flow structures

« Variable recovery and type inferencing
« Pretty-printing of the representation into C

54



Lab 3. More Reversing

e ais3_crackme
— Find the correct flag that this binary takes.

55



Lab 4. Self-modifying Binary

e bonnie
— Find the correct flag that this binary takes.

56



Library Functions

* You don't implement everything on your own.
Instead, we stand on the shoulders of giants

« Who are giants in the world of software
engineering? Libraries

« Library functions implement logic that can be
reused
— C: libc, pthread, math, libcrypto, ...
— Python: re, logging, hashlib, ...
— Qt: ...

57



Understanding Library Calls

* Library calls have well-defined interfaces and
functionality. You do not need to guess what they
do!

— Man pages

— Library documentation
— GitHub

— Google

58



Invoking System Calls

« System calls are usually invoked through
libraries

— 1libc
e Linux/x86_64

— syscall
* rax contains the system call number

» What syscalls are there? Is there a reference?

— Herel

https://blog.rchapman.org/posts/Linux_System_Cal
|_Table_for x86_64/

59


https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

System Calls are OS-specific

« Platform-specific Linux syscall tables

60



Lab 5. Binary Patching

e pacman

— |dentify the main function that implements the game
logic (the function with a large switch-case struct).

— The ghosts are moving too fast. Make them move
slower!

— Make pacman immortal!

61



	Slide 1: Download Tools From SMB
	Slide 2: Binary Decompilation
	Slide 3: Who am I?
	Slide 4: How about Decompilation?
	Slide 5: Format
	Slide 6: Tools
	Slide 7: Pick Your Poison
	Slide 8: Download Tools From SMB
	Slide 9: IDA Pro
	Slide 10: Binary Ninja
	Slide 11: Ghidra
	Slide 12: angr
	Slide 13: Decompiler Explorer
	Slide 14: Lab -1. BYOD
	Slide 15: Lab 0. Let’s Decompile
	Slide 16: Step 0: What to do?
	Slide 17: Step 1: How is it implemented?
	Slide 18: Step 2. Understanding Logic
	Slide 19: Step 3. Reflection
	Slide 20: Why Decompilation?
	Slide 21: Why Decompilation?
	Slide 22: Debugging
	Slide 23: Modern Debugging
	Slide 24: You are part of the problem!
	Slide 25: Software Bugs are Prevalent
	Slide 26: You are not the only problem
	Slide 27: Compiler Bugs
	Slide 28: Are Compiler Bugs Rare?
	Slide 29: GCC 3.2 Bug Fixes
	Slide 30: VC6 Variable Scope Leaks
	Slide 31: Seemingly Compiler Bugs
	Slide 32: Seemingly Compiler Bugs
	Slide 33: Debugging & Reverse Engineering
	Slide 34: Decompilation 101
	Slide 47: Disassembling
	Slide 48: Static Analysis
	Slide 49: Manual Decompilation
	Slide 50: Wait… Architectures? Platforms?
	Slide 51: Lab 1. A Challenge with Crypto
	Slide 52: Lab 2. A Bit More Crypto
	Slide 53: What’s inside a decompiler?
	Slide 54: Decompilation Techniques
	Slide 55: Lab 3. More Reversing
	Slide 56: Lab 4. Self-modifying Binary
	Slide 57: Library Functions
	Slide 58: Understanding Library Calls
	Slide 59: Invoking System Calls
	Slide 60: System Calls are OS-specific
	Slide 61: Lab 5. Binary Patching

