_ -
A " N N - " \ | \ B 4 2 | &
, V oY e) | y) X
b | L= | & v § | § | & \ D M= S ,’ | & J' |
I’ y
- |
‘ - . F / \ y _ | \ 1
L — 7 ’ 7 y R) | | J y_J < 7 Y g’ y ¥y A | | \ L
m N A -y ‘ w K \ s ‘ \ \) |
|) { | |) 1 y N |
| A | y Y) | D | y L | 1 y y
” A - | » - p D | 4 \ O ! | | ©) - N y
\ J y
N | — .
- - 1 - e . - - - o -, IN 8 | B y
P LAY /71 y 4 A = L] . /1 L p f 1 £ ™ 4 y o v A = y Y y A 4 Y)
”J X 41 oN 1 004)Yel o o ©)Iofe) N A D g) [y 4 A | | = | &
y y

CyberTruck Challenge™ 2023

. linkedin.com/in/BenOLOGardiner

github.com/BenGardiner

NN

/ { wudy
NS N LA N
VY Ve /

BenLGardiner
N
&‘/

O Ben Gardiner

O Senior Cybersecurity Research Engineer
confractor Beat NMFTA £

O Experience: Embedded systems dev, RE
O CyberTruck™ Challenge Instructor

O DC HHV & CHYV volunteer

O SAE volunteer

: Decrypt ‘Crypto’

Building Blocks

Agendq : Break Hashes

NAtftacking Building Blocks 10

: Break Crypto, others

O We will break regularly for
questions at section breaks Protocols 15

O But also feel free to ask wAftacking Protocols 10

questions anytime Protocol: WPA2 (\ Attacks) 5

0 Much material from the following Protocol: TLS / SSL (N Attacks) 20

reference: Protocol: UDS Seed-Key Exchange (N Attacks) 10
Anderson, Ross. Security

engineering. John Wiley & Sons,
2008. 150 mins

: Derive the UDS Routines

O Buy this book!

O Prev. edifions are also freel

Lightly Compressed. See 2021
UNABRIDGED for follow-up details

https://www.cl.cam.ac.uk/~rja14/book.html
https://www.cl.cam.ac.uk/~rja14/book.html

Cryptography
butin orange

‘Crypto’

m'NGS “CRYPTO" N
MEANS

- - = =) y <

- |)
) A 2

¢ | / v - 14
- 4 l) | - \ [}
S \ .
y |

: ' -

' | .

| ‘ ' | - -

Encryption

Encryption — an encoding which can be reversed (given a key)

A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E)
using a key (K)
E = {M

Decryption is possible with the cipher, the ciphertext, and the key
e.g. AES, RSA, ECC, 3DES, ...

Something that's . baseéd (e.g.
ZS5nLiB@aGlzIGIhbG9uzZXkgcmlnaHQgaGVyZQ==)

Hands-On: 10 Minute Challenge

'Decrypt’ these (you're actually decoding):
1 d2VsY29tZSBObyBIRjIwMjA=

_ c2VudGluZWw=

These are baseé4 encoded (not encrypted).

This might seem obvious to some — but it is notf uncommon to encounter
baseébd ‘encryption’ in the wild.

Here's a handy set of tools for this:
hitps://web.archive.org/web /2021 /http://rumkin.com/
Also python/jupyter. import base64; base64.b64decode('xxx")

https://web.archive.org/web/2021/http:/rumkin.com/

Hashes

Q (Cryptographic) Hashes — not an
encoding & not reversible

a Different than the larger, general
class of hash functions

a For a crypto. hash function f:
given f(x) you can't find (guess or
calculate) x

0 i.e. shouldn’t be able to find input x for:
3947cdf52a551de4983746545al1affdb2bo4f4a2 Or
212321297a57a5a743894a0e4a801fc3
(actually, this one is easy)

» aka One-way Functions

» aka Random Functions
» aka Shortcut Functions

» aka One-way Compression
Functions

» aka Digests

d e.g. SHA-1, SHA-256, BLAKE, ...
a MD5

‘Classic’ vs Modern Crypto

Q 'Classic’ Crypto
O Mostly pre-20th century
O Deals with alphabets: input & output
a e.q.

gbag qrpvcure guvf

* Matt_Crypto, wikipedia, Public

0 e.g. substitution cipher, polyalphabetic substitutions, franspositions efc. pomain

Q Itis sfill encryption — the ‘key’ is the knowledge of the mapping (shift, letter-
map etc.)

O Relevance today: puzzles, challenges and easy reverse engineering

O Modern Crypto
O Deals with numbers: input & output

O Text is treated as numbers via encodings — ASCII or UTF-8 is the most likely
encoding
2@
64616e742064656369706865722074686973 @ (00..10) — 10
646e6Cc77246163646179626e7e2d7a677962

Stream Ciphers

A One-Time Pad (OTP) — the only proven
secure encryption scheme

O Uses random key-stream, of length
equal to or greater than the

message eystream
O Then combine key-stream with IV + key ’ Pﬁ].ﬁ].
message (assume XOR) seed
: —1 ll[i][i]
Q Stream Ciphers — approximate the OTP Plain text

O Expand short key into pseudo- ﬁ]ﬁ].

random keystream C pher text

Di Kyle Siehl - Self-made, based on raster w:image:Wep-crypt.png, which was taken with permission
from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

D Th en XOR (@) (N) https://commons.wikimedia.org/w/index.php2curid=1806804

O e.g.RC4, Salsa20, FISH

O note: IV —initialization vector. It shouldn’t r
need to be secret

Block Ciphers

A Block Ciphers — different approach
d Uses a key and fixed-length inputs (blocks)

d Combined with previous outputs and more fixed-length inputs in various
modes

0 ECB, CBC, PCBC, CFB, OFB, CTR ... GCM(!)

Plaintext Plaintext Plaintext

Plaintext Plaintext Plaintext
[TITTTTITTTTT] [TTTTTITITITT [TTTTTITITITT

Initialization Vector (IV)

i : ll : i : T ——= 5 SF
Key — block c:qher Key — block -:up_her Key — block clqher
SO EREIYREOS SR Ken block cipher Ken block cipher Ken block
&y encryption ey encryption &1 encn

cipher
yption

| | |

(ENEENERENENEN] (EENENERENENEN] (EENERNERENEEE] EERNEEEENEEEE] EEENEEENEEREE] EENENEENEE NN
Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption Cipher Block Chaining (CBC) mode encryption

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, By WhiteTimberwolf (SVG version) - PNG version, Public Domain,
https://commons.wikimedia.org/w/index.php2curid=26434116 https://commons.wikimedia.org/w/index.php2curid=26434096

Symmetric / Asymmetric Crypto
d Symmetric Crypto — can be encrypted + decrypted by any party with the SAME key

g

e.g. any of the crypto we've discussed so far

a Asymmetric Crypto — can be encrypted by any party for a specific recipient

Q
Q

O Vv O 00

aka public-key cryptography

Leverages certain problems that are hard in one way & easy in the other: prime
factorization and discrete logarithms

Keys exist as pairs of public & private halves -- key-pairs

The party with the private key can decrypt & sign (more on signatures later)
Any parties with the public key can encrypt & verify

e.g. RSA, ECC

izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJIgCQuuvT+qZI 13

Crypto Building Blocks
Section Summary

d Encryption... it hides information, binds it — protects confidentiality, but not integrity
(without additional effort)

E = {M}
d (Crypto) Hashes — one-way functions. With f(x) you cannot get x
a 'Classic’ Crypto - involves alphabets not numbers

d Stream Cipher — combine a sequence of key bits with a sequence of cleartext bits with
XOR () (™)

O Block Ciphers — have a limited key stream, but extend to larger cleartext sequences
O Noft all block cipher modes are created equal (e.g.)
d Symmetric Crypto — all parties share the same key

O Asymmetric Crypto — only one party has the decryption key (private key)

Atftacking Hashes

O Google.
Q Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

O Identifying what type of hash you have in-hand will be useful — the length gives it away
d If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector
O Hash Crack sites
O hashcat tool
d (ab)uses your GPU for rapid hash cracking

O Rainbow Tables
d ’'halves’ / parts-of hashes pre-built and ready to go
O For things like MD5 these are trivial

O For things like SHA-256 these are huge (multi-TB)
O You can pick-up pre-generated tables at DEFCON Data Duplication Village. Bring a 6 TiB HDD.

0 And cooler things like hash-length extension attacks

Cooler Aftacks on Hashes

Hash-Length Extension Attacks

Take a known H(‘start’) and add to it
to get: H('start’ + junk)

Get to a known identical hash for
‘start’ and ‘start’ + junk

Taking Advantage of File Formats

PDF has lots of place to hide
information

See Ange Albertini’'s work on PDF
polyglots

This can be leveraged to create
PDFs with the same SHA-1

https://shattered.io/ &

https://shattered.io/

More on Attacking Hashes

U Salts

O Because it's pretty easy to lookup or build a table of known inputs for
hashes; designers tend to follow the best practice of 'salting’ their inputs
LID033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)
U3947cdf52a551de4983746545alaffdb2bo4f4a2 = SHA1(‘saltadmin’)

A Salts are usually pre-prepended onto the input; sometimes with a separator
like ‘. or '+’

O hashcat can find a salt for a given hash and input pair.

O hashcat can also find inputs for hashes with a given salt as a parameter.

QFind the salt with one known hash first.
QOR find the salt with research (some systems’ password salts are well-known)

Still More on Attacking Hashes

Password lists

Brute-forcing (all possible character
combinations) for inputs to hashes is

DICTIONARY ATTACK! possible
_Q ‘password lists’ are more useful. There are
\\ —_ uf hundreds of these to choose from, most
from data breaches over the past years.

In CTFs the rockyou list is the most
common — but for applied hash cracking:
YMMV.

This is more generally known as @
dictionary attack

Hands On: 10 Minute Challenge

Reverse these hashes:

15f4dcc3b5aa765d61d8327deb882cf99
15baa6led4c9b93f310682250b6cf8331b7ee681d8

_Jlecadec2924e86bf88d622ceb0855382d
1 ff4827739b75d73e08490b3380163658
_l6ce3bb6eb450df7d6345151ecOBedade

We've mentioned the tools you need for this.

Some are easy. One is not (hint: 2 character salt)

20

Atftacking ‘Classic’ Crypto
d Historically, frequency analysis was the undoing of classic crypto

d Letfter use in a language (e.g. English) has a predictable #
occurrences (frequency)

d Count the number of occurrences of a symbol in ciphertext; match
to expected rate in language

O Requires medium-large ciphertext for analysis 1o work

dToday (challenges/puzzles/RE):
A Try shift ciphers (start with ROT13)
d Then try a substitution cipher

d Then have ‘fun’ :
https://web.archive.org/web /2021 /nttp://rumkin.com/

https://web.archive.org/web/2021/http:/rumkin.com/

Hands On: 5 min Classic Crypto Attack Example

Ploregehpx 2018 sbe gur jva!l
N uhtr gunax Ibh arrgf gb tb bhg gb bhe fcbafbef. Guvf ceb-vaghfgel
rirag qrcragf ba npgvir fcbafbe vaibyirzrag naqg fhccbeg.

https://web.archive.org/web/2021/http:/rumkin.com/

Stream Cipher Atftacks
JRe-used Key Attack

 Recall: it's all about XOR () (*)
J If know A*B and | know A or B, | can get the other

J Anytime a stream cipher re-uses keys, it's a problem
difl have E1 = A*K and E2 = BAK | can get A*B

J this is a big deal if:
LA, B are natural language (use running key cipher attacks on A”B) or if
UA, B are different lengths or if
Owe can control A or B or if
Uwe can make any guesses about A or B

Hands On: 10 Minute Challenge

Break these stream-ciphertexts
And get the key

_1ad9bc999b790c281
_1b69895ddecce86¢cc

it's all about XOR (A)

RN | SN oF) ¥) SN | SN B) VN | SRR T | SR I / B NS | W S

Block Cipher Attacks

Q Getting impractical now...
A Goals: forgery or key-recovery
O Block Cipher Attack Models
O known plaintext: attacker is given a set of pairs of cleartext+ciphertext

O chosen plaintext: attacker has the ability to query cleartext and receive
ciphertext

O chosen ciphertext: attacker has the ability to query ciphertext and receive
cleartext

O chosen plaintext/ciphertext: attacker has the ability to query either

d related key: attacker has the ability to query with key related to specified
key, K (e.g. K+1 K+2, ...)

Padding Oracle Attacks

d An example chosen ciphertext attack:

A Padding oracle attack: attacker supplies ciphertext, detects ‘incorrect
padding’ error conditions — can use this oracle to ultimately decrypt
messages

QA Surprisingly common

26

Cryptanalysis and More

A Linear Cryptanalysis 0 Differential Cryptanalysis

Q solving for sensitivity relationships of
changes to cleartext bits (input) onto
ciphertext bits (outputs)

O solving for linear relationships between
cleartext (input) and ciphertext
(outputs)

O at fractional likelihoods O aft fractional likelihoods

O then use any high likelihoods to guide
attacks with chosen inputs

O using the likelihoods to sometimes
predict ciphertext from cleartext

O ‘correct' crypto is designed to resist

A e GRS O Modern ‘correct’ crypto is design to

resist these attacks too

d Other Cool Stuff: Slide Aftack, XSL Attack,
Impossible Differential, Boomerang, ...

Reality Check

We talked about attack models & attack goals; some families of attacks
No simple attacks after ‘Classic’ crypto
Few practical attacks

Attacking Crypto these ways is hard, for 'correct’ crypto:
O e.g. SHA-256, AES-128, RSA-2048, ECC w/ curve 25519

O 0 0 O

O Forincorrect crypto (e.g. anything else)
Q Isit XOR ‘Crypto’2 = Try XOR ciphertexts together; try XORing it with good guesses too

O OR Are there repetitions of data patterns in the ciphertexte Maybe it is ECB mode or maybe it is key-reuse in a
stream cipher

O OR If you know the name of the crypto, use google — maybe you will find tool or PoC to break it

O Butit's not impossible
O People build protocols out of these building blocks — protocols get broken more often

O (and don't forget side-channel attacks and software exploitation)

Hands-On: 10 Minute Challenge

Decipher the following strings:

Lqydolg#Sdvvzrug$ Sdvvzrug#RN$$$#=,

Hinfts:
from the IOLI crackme challenges:

pof.eslack.org/tmp/IOLI-crackme.tar.gz

€

Done? Already? Do a ‘beginner’ challenge at potatopla.net/crypto/ 29

https://web.archive.org/web/2021/http:/rumkin.com/

Other Attacks on Block Ciphers

O Recognizing ciphertext blocks can let you
decrypt them:

O maybe not to their contents, but to their meaning

O (Sometimes also their contents; e.g. infer all-zeroes
input)

O Use viz tfools: vix, radare?2, binvis.io, Veles, hobbits

AES_ECB(@,) =

http://binvis.io/#/

Other Attacking Building Blocks

O Software Exploitation can yleld bo’rh con’rrol of the sof’rwore o[gleoNe|Ne
information leaks “@w g A

O Access to procéss mem'ory can be fruitful key extraction attacks
 Multiple tools are available to scour memory for keys:
O e.g. aeskeyfind, radare2, volatility

O Reverse engineering of the program code in memory can yield poinfers to
the memory locations of keys

O Don’t underestimate the downplayed Infoleak vulnerabilities '
d c.f. Heartbleed

Aside: Entropy Visualization

Entropy (in the sense of C. Shannon) is a metric of information-density in
message/value/bit-sequence

It turns out (thanks also to Shannon) that information is maximized when the
likelihood of 1/0 are equal

i.e. ‘completely random'’ IS highest entropy.

The entropy of a bitsequence can be estimated

Estimated entfropy approaches 1.0 for random number sequences
Next-closest to 1.0 is ‘correct’ crypto
Then compressed data

Estimated entfropy is not high for other data (structured data)

32

Aside: Entropy Visualization (cont’d)

dThe entropy estimates can be broken-up over a large input and
visualized

dYou can identify and distinguish between
d encrypted (correct) content
d Other encrypted (incorrect) content
d Compressed content
dRules of thumb:
d Compression looks like pretty high entropy
d Encryption looks like really high entropy

33

binvis.io
entropy

Attacks on Building Blocks Section Summary

Q

Q

Hash Attacks — collisions, pre-image etc. use google. All other practical (for us mortals)

attacks are in hashcat, use if.

Classic Crypto Attacks — frequency analysis. Try simple things first, use cryptogram tools,
ID the cipher and try cipher-specific attacks

Stream Cipher Attack — Reused Key Attack. i.e. try XOR (A) things together, make
guesses

Block Cipher Attack Models — probably impractical but use the right search terms
Except ECB: recognize patterns
Don’'t forget about software exploitation; in-memory attacks.

Breaking protocols is more fruitful (next sections)
Remember these tools:
https://web.archive.org/web/2021/http://rumkin.com/

CyberChef: hitps://gchg.github.io/CyberChef/
Visualization tools: binwalk -E, radare2, binvis.io, Veles, hobbits

https://web.archive.org/web/2021/http:/rumkin.com/
https://gchq.github.io/CyberChef/
http://binvis.io/#/

Protocols

A

v

&
<«

d Protocols — the rules that govern the communication between parties

d What information is transmitted from party A to party B2
O What steps must party B performe

O What information must be sent in reply (if any)?

Q etc.

Protocol: Simple Authentication

Q Simple Authentication:
d Source: wants to be authenticated by the target
d Target: decides if source is authentic
O The source sends:

O its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key
(KT) that could be specific to the ID and also is known to the target.

TH{T [Nker

O The target:
U looks-up encryption key KT from given ID T;

O decrypts the {...},; and checks the nonce N hasn’t been seen before.
» Nonce : Number used ONCE 38
(e.g. older keyfobs / garage door openers — source is the fob, target is the car or garage door.)

Protocol: Message Authentication Codes (MAC)

O Message Authentication Codes: for a message, create a value that can enable the message to be
verified by any party with the shared key (the same shared key that is used to create the value). e.g.:

CBC-MAC - build a MAC with CBC chaining mode of a block cipher
CMAC - also uses a block cipher

HMAC - build a MAC with a hash function

CBC-MAC-AES128, HMAC-SHAT, etc.

©) © (© ©

M| 'MAC’

O Parties receiving messages that don't verify against the key (shared in this case) shall discard messages

O How the shared keys are distributed and how messages are discarded is additional protocol details
(for the next layer of the protocol specification)

» aka Message Integrity Code (MIC)
» aka profected checksums
a message digest: (M) where ' is a hash function.

Protocol: Digital Signatures

Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to
be verified by any party with the public key but cannot be created by any party without the private key.

a signing party with a private key can create a signature
parties with the public key can verify that signature

e.g. DSA, ECDSA. Let's consider a simple, older RSA signing:
Send message, M, and signature together

M [{H(M)}

source target

To verify: Decrypt {H(M)}, and assert it is equal to H(M), where H is a cryptographic hash and k is the RSA
private key

In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

e.g. what if they sent: K| M | {H(M)}, where K is the public key?

Protocol: Challenge-Response (C-R)

O Source wants to be authenticated by the target
O Source receives d nonce as challenge
O Transforms it and replies as response

O Anideal C-R would make it impractical for an attacker to guess the secret by observing
traffic of multiple C-R exchanges.

O If attacker sees both challenge and response = known plaintext attack

Ready

Challenge: N

A

Response: f(N)

PASS / FAIL

A

Protocols
Section Summary

Protocols — the rules that govern the communications between parties

Digital Signatures — can be created by parties with the private key but verified by
anyone with the public key (built from asymmetric crypto)

Message Authentication Codes (MAC) — can be created and verified by any party with
the key (can be built from symmetric crypto)

Nonce “‘number used once"” — can be random or a counter ...

Simple Authentication — source send its ID and an encrypted ID+nonce pair to a target
for verification

Challenge Response - target sends nonce to source; source replies with some proof
that it has an ID known to the target

e.g. nonce encrypted with key known to source
e.g. nonce transformed with parameters known to source

Attacks on Protocols

Generally: try to break the assumptions of the protocol

This actually generalizes to “How to attack any specification’:

Anywhere the specification says SHALL/SHOULD - see what
happens when it DON'T...

Attacks on Simple Authentication

Simple Authentication assumes nonce N hasn’t been seen before
If the nonce is random:

Does it actually checke = Send again (Replay Attack)

How many nonces does it store? = Send +1 (Valet Aftack)

If the nonce is a counter:

How does it resynchronize? — Try sending counter guesses (Bad counter resync
aftack)

Simple Authentication assumes that the key KT is associated with the ID T and

Are there other T that could associate with KTe = Try sending to other target (Key
collision attack)

Attacks on MAC
For

Recall: these — but they get used that way occasionally
Recall: you will know the input, i.e. you will have at least one +message pair

You need to identify digest algorithm — length usually gives it away; also see tools
like cothan/hashdetector

You may need to identify the salt also — hashcat can do this

For HMAC- MD5, SHAT, ...
hashcat can crack the key or salt given a hmac+message pair

Software exploitation, ‘confused deputy’

Software exploitation could enable control of what messages are sent by a piece of
SW designed to send mac+message pairs.

Yields a successful forgery attack unless other software-integrity measures are taken.

Attack on Digital Signatures

O Recall the RSA Signature example: Send message, M, and signature together

M [{H (M)}

O Agreeing on the K public key for the k private key is a critical part.

O What if the protocol includes the public key K2
KIM [{H (M)}

O Then an attack is to use your own private/public key pair a/A and send:

A M [{HM)}q
O Watch out for this pubkey . It happens sometimes...
O More generally: try to find ways to substitute the expected public key K for your key, A
O Stored in flash somewhere?

47

Attack on Challenge-Response:
Middleperson Attack (in General)

O

©) (@ (e (9

Interposing an actor in-between the source and target
aka MiTM

Enables tampering with the contents, ordering, timing etc.
Good concept for on specific Challenge-Response protocols
Definitely applicable in when you can interpose

Can even be effectively achieved without physical interposition if messages can be
selectively denied (e.g. or)

»
»
&
<«
»
»
<
<

I
—

f-)

& e

Attacks on Protocols
Section Summary
are more fruitful than attacks on building blocks

Simple Authentication Attacks

Key Collisions — e.g. 16bit serial number used as input to key

Key Exiraction and Extension — e.g. Keelog

Replay Attack — capture one or more, replay selectively

Valet Attack — capture a large set during tfemporary but extended possession

Bad Counter Resynchronization — depends on resync behavior of protocol
MAC

, Hash breaking HMACs, shared-key reuse for MACs

Digital Signature Attacks

Public key substitution
Challenge-Response Attacks

Middleperson Attack

(and more coming up in later section)

g \ W ' D Y ,)
f . : y y
_ I ™\ . | YAV | a
)) B \ y y

WPA2

Wi-Fi Protected Access 2
Wi-Fi confidentiality measure
Supersedes WEP (which was a very broken protocol)
WPA2-Personal (-PSK)
uses a pre-shared key.
Each client (supplicant in WPA-speak) gets its own session key
Setup of the key is visible at different levels.
WPA2-Enterprise
Enables authentication of the Access-point

All communication with the Access-point is done with individualized keys

Let's discuss WPA2-Personal

WPA2 Handshake

Nonce

Nonce (& MAC)

Key (& MAC)

Ack

\ 4

4-way handshake

O A nonce

O Then another nonce with MAC
O Then a global key with MAC

O Then an ACK

Grossly over-simplified

Attacks on WPA2

There is a MAC, implemented as a HMAC which is sent by supplicants and derived from
the pre-shared key

Hash attfacks fo reverse this

There are advantages to having observed multiple nonce & MAC -- so the
attack starts with causing the target to deauthorize from the Wi-Fi (repeatedly)

hashcat can do the cracking, but not the de-auth
airocrack-ng can do both

Attacks on WPA2 (cont'd)

There is a key reuse vulnerability in some client
software, dubbed KRACK

When the key is ‘installed’, the client resefts its
communication counters

By replaying message 3 in the handshake,
c;)fun’rkers can be reset repeatedly — key reuse
elifele

Some systems were even vulnerable to
installing a by sending a tampered 3@
message

Fun-fact: WPA2 had been formally-proven secure.

The spec of the formal proof did not include
"keys must be ‘installed’ once and only once”

https://www.krackattacks.com/

Nonce

Nonce (& MAC)

Key (& MAC)

Ack

Nonce

Nonce (& MAC)

Key (& MAC)

Ack

(& MAC)

https://www.krackattacks.com/

Hands-On: 1 Minute Challenge

Capture as many users of the Cybertruck Wi-Fi as you can in 1 minute.

I'm kidding — please don't attack the Wi-Fi. I'm
using it.

O KRACK is unnecessary — your systems all know the WPA2 password
already (it is a pre-shared key)
d How this would work
O 'de-auth’ other clients so you could withess their handshake with
the Access Point.
d At which point you would have their session key and could
decrypt all their traffic.

55

Protocol: WPA2
Section Summary

WPA?2 Passwords can be cracked, indirectly, via the hashes exposed in the
handshake

The process is accelerated by capturing multiple 4-way handshakes, so
the attack usually also includes a flood of de-authenficating the clients

WPAZ2 keys can be reinstalled (KRACK)

Re-installing a key resets counters — this gives a key reuse attack
Sometimes WPA2 keys can be nulled (KRACK)

Then follow up with known-key attack (v. simple in this case)

These attacks on Wi-Fi require clients are connected

O https:// & ’rotocol

e

Protocol: TLS / SSL

Transport Layer Security (TLS). Was SSL, now that name is deprecated
Used in HTTPS — but can be found without HTTP

Provides both confidentiality and authentication of endpoints
typically client authenticates server
Sometimes server also authenticates client -- we're not going cover this

°° ®

Certificates?

Chains of Digital Signatures (asymmetric crypto)

Recall: only the owner of the private part of a public key-pair can:
decrypt fraffic encrypted to the public key
create a signature verifiable by anyone with the public key

End-entity Certificate

Owner's name
Owner's public key

Issuer's (CA's) reference
name
Intermediate Certificate
Owner's (CA's) name
Owner's public key

Issuer's (root CA's) reference
name j

Issuer's signature

Root CA's public key

self-sign Root CA's signature

Root Certificate

By Yanpas - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.phpgcurid=46369922

How Clients Are Supposed to Authenticate Servers

End-entity Certificate
Owner's name
Owner's public key

Issuer's (CA's) reference
name

Issuer's signature Intermediate Certificate
Owner's (CA's) name
Owner's public key

Issuer's (root CA's) reference
name

Issuer's signature

Root CA's public key

p Root CA's signature
self-sign

Root Certificate

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.phpgcurid=46369922

Client Implementations of Server Authentication

“Type” Trust

Type 1 E Trust anything (no SSL/TLS)

Type 2 — Trust any valid certificate

Type 3 E Trust any root-CA in OS Trust Store

Type 4 Trust only (pin) the pub key of certificate
Type 5 2 S-=— Trust only (pin) the pub key of cert. signer
Type 6 ; E + % Pinning and Inteqgrity Verification

NB: The proxies will work out-of-the-box on Type 1 and Type 2

Middleperson (aka MiTM) Attacks
« HTIP Proxies: mitmproxy, Burp, ZAP, martian
« Non-HTTP: MiTMF, ettercap, bettercap, SSLSplit

+ Some require that you setup the proxy as a gateway -- some can work as a

sibling (leveraging ARP poisoning)
22 @
S p

Certificate Substitution Attacks (on Type 2)

O Proxy creates two TLS connections

O Upstream, client connection to server — normal, valid, nothing to see here
O Downstream, served to client — supplies some other certificate
O Type 2 client sees ‘a cert’ and is happy

L o

v

A 4

A

A

A 4

\4

A

63

Trust Store Attacks (on Type 3)

Can you add a root certificate authority to the trust store?
If you have Ul access to an Android device the answer is probably yes

Can you use a compromised root certificate that is already in the frust storee

There have been several compromised root cerfificates over the years
(Komodo, Symantec)

If the devices is old enough, the compromised root certificate might be in
its frust store

Forge a server certificate signed with the secret from the compromise roof;
install that in the proxy (e.g. mitmproxy, Burp, etc.)

Getting the compromised secret is... the tricky part

Types 4-5 Attacks

Recall: types 4-5 use certificate pining — they will only accept a connection from a
server with a particular expected public key

If a different public key is supplied they abort connections
Software Exploitation is the only remote attack

If you have superuser privileges on the systems executing the type 4-5 app then
there are simple ways to replace the expected pub key or bypass the abort
connection response:

Patch the pubkey from the software

Runtime hooking: e.g. Universal Android SSL Pinning Bypass with Frida
h’r’ros]é//codeshore.frido.re/@ocioolloni/universol—android—ssl—oinninq—bvoass—
with-frida/

Types 6 Attacks

The runtime integrity checks will prevent most patches, hooks and exploits.

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

Other Attacks (on all types)

SWEET32 — monitor long-lived Triple-DES and recover cookies

DROWN - break confidentiality of some TLS (downgrade)

Logjam — break confidentiality and integrity of some TLS (downgrade)
POODLE - break confidentiality and integrity of some TLS (downgrade)

Not very practical — only PoCs available : poodle-PoC, Tim---/drown , drownAttackDemo

There are even passive differential cryptanalysis attacks — working only at large-scale and long
time periods

Recover a RSA private key from a TLS Session with Perfect Forward Secrecy — Marco Ortisi

Other ‘other attacks’ (not confidentiality or integrity compromising):

Heartbleed — exploit memory leak in some OpenSSL versions to view 64K of server memory
(in theory could yield a server secret)

Protocol: TLS / SSL

Section Summary

TLS (SSL is deprecated) sets up a channel with confidentiality and authentication
Confidentiality is established with key-exchange

Authentication is established with certificate chain verification — the chain ultimately ending in
an authority in a trust store of the endpoint

TLS/SSL middleperson attacks require a network interposition and include:
Abuse of endpoints not checking certificate chains
Abuse of trust-stores — adding new authorities into them, or convincing users to do it
(rare) crypto breaks to obtain session or master keys
(less rare) forced downgrade to TLS/SSL version with publicly broken crypto

Ofther TLS/SSL Aftacks (some are aforementioned rare crypto breaks):
SWEET32, DROWN, logjam, POODLE, Heartbleed

Tools:
mitmproxy, Burp, ZAP, MITMf
poodle-PoC , Tim---/drown , drownAttackDemo

D y ! - < - { L 3 | | P ¢ g ¢
/ 1 W 4 . " N s] - | " %) | \ - P N
| 4 ' .) \ \ V |]) |
» | > » O T \ - L . | o N » -
y - gy

UDS

Unified Diagnostic Services — ISO 14229 ; on CAN: ISO 15765

Used for nearly ALL vehicle Diagnostic Protocols

There are actions in UDS that are protected. To execute the action requires
authorization: e.g.

Read memory
Reflash ECUs
Perform potentially dangerous maintenance operations

aka ‘the fun stuff’

UDS Avuthorization

Sometimes UDS is helpful; it will tell you that you need to authorize
Negative Response Code : SecurityAccessDenied
—YoulHcarn-aboutthese

To authorize; unlock the current session with SecurityAccess Seed-Key Exchange
‘Session holder’ (server) emits a ‘seed’; ‘session user’ (client) returns a ‘key’
Service 0x27 (replies on 0x67)

Subfunction 0x05 for requestSeed / 0x06 for sendKey

You'll know more about these soon

Seed-Key Exchange

?1Seed-key exchange is a Challenge-Response Protocol

»10Only 16-bit space; so it might not fit our ideal characteristics of resisting known plaintext
forgery attacks

2*The ‘seed’ here is a challenge and the ‘key’ here is a response
(Zfd%

[|

-- -- 02 27 05

-- -- 04 67 05 5E ED

; -- -- 04 27 06 FF FF

-- -- @7 27 @6 FF FF FF FF FF

A

/1

A

PT [F
18DAOOF1
18DAF100
18DAOOF1
18DAF100

18DAO0OF1
18DAF100
18DAO0OF1
18DAF100
18DA00OF1

CAN
A

-- 02 27 05

-- 04 67 05 5E ED

-- 04 27 06 FF FF

L

-- 87 27 06 FF FF FF FF FF

wel
-
A
= O = Ok O O O

N B B NS WO N

[
o
o

Daily J., COMVEC15, A Digital Forensics Perspective ...

NB: J1939 IDs Ox18DAO0O0OF1 and Ox18DAF100 are used for UDS over J19?}92

18DAF100#0467055b31
18DAGOF1#0427065c31
18DAF100#0467053632
18DAGOF1#0427063732

18DAF100#0467052c31
18DAGOF1#0427062d31
18DAF100#0467053839
18DA0OOF1#04276063939

5 Minute Hands-On:

Derive the Seed-Key Routines

18DAF100#0467050100
18DAOOF1#0427063435
18DAF100#0467050100
18DA0OOF1#0427063435
18DAF100#0467050100
18DA0OOF1#0427063435
18DAF100#0467050100
18DA0OF1#0427063435

18DAF100#0467052c31
18DA0OF1#0427060005
18DAF100#0467053132
18DAOOF1#0427061d06
18DAF100#0467053732
18DAOOF1#0427061b06
18DAF100#0467053137
18DAOOF1#0427061d03

78

‘Crypto’

o UDS Seed-Key
Exchange

IBGIB Cryﬁto’éﬁ'“

Protocol: Seed-Key Exchange
Section Summary (see UNABRIDGED for missing STUFF)

J1939 IDs 0x18DAGOF1 and ©x18DAF100 are used for UDS over J1939

SecurityAccess service is 0x27 / sub requestSeed: ox05 sendKey: 0x06

If you have diagnostic software:
Reverse the key algorithm & parameters from PC software
Black-box / Lift the key algorithm & parameters
If you have ECU firmware:
Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)
If you have some captures of successful SecurityAccess:
Solve for unknowns in a known formula from related ECUs
Retry seeds until a match occurs with one in the captures
If you have only the ECU:
Brute-force (can you control the seed?)
Get some captures (e.g. service center) — see above

Glitch past the check — be amazing

Summary

O 'Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

O 'Crypto is hard’ 2 means correct crypto is hard to break, if you have only the capture
of communications

O Crypto building blocks don't get broken very often (given only the capture of comms)
O Crypto protocols get broken

O Crypto gets broken via side-channels

O Crypto gets broken by compromise of execution environment

O You can middleperson-attack TLS/SSL
O You can lift/reverse/solve/brute-force Seed-Key Exchange

Resources for Continued Learning

Cryptopals (CTF), T. Ptacek et. al.

Let's Play with Crypito (Pres.), Ange Albertini

Any and all SO answers by Thomas Pornin

Security Engineering (Book), Ross Anderson

PotatoSec Crypto Puzzle Challenges
POC| |GTFO (Journal), mirror

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://stackoverflow.com/users/254279/thomas-pornin?tab=answers
https://www.cl.cam.ac.uk/~rja14/book.html
https://www.potatopla.net/crypto/
https://www.alchemistowl.org/pocorgtfo/

	two and a half hours !! ed
	Slide 1: Cryptography Session: ”How Crypto Gets Broken (by YOU)” 0x74776f616e646168616c66686f7572732121th Ed.
	Slide 2: About Me
	Slide 3: Thanks to:
	Slide 4: Agenda
	Slide 5: ‘Crypto’
	Slide 6: Crypto Building Blocks
	Slide 7: Encryption
	Slide 8: Hands-On: 10 Minute Challenge
	Slide 9: Hashes
	Slide 10: ‘Classic’ vs Modern Crypto
	Slide 11: Stream Ciphers
	Slide 12: Block Ciphers
	Slide 13: Symmetric / Asymmetric Crypto
	Slide 14: Crypto Building Blocks Section Summary
	Slide 15: Attacks on Building Blocks
	Slide 16: Attacking Hashes
	Slide 17: Cooler Attacks on Hashes
	Slide 18: More on Attacking Hashes
	Slide 19: Still More on Attacking Hashes
	Slide 20: Hands On: 10 Minute Challenge
	Slide 21: Attacking ‘Classic’ Crypto
	Slide 22: Hands On: 5 min Classic Crypto Attack Example
	Slide 23: Stream Cipher Attacks
	Slide 24: Hands On: 10 Minute Challenge
	Slide 25: Block Cipher Attacks
	Slide 26: Padding Oracle Attacks
	Slide 27: Cryptanalysis and More
	Slide 28: Reality Check
	Slide 29: Hands-On: 10 Minute Challenge
	Slide 30: Other Attacks on Block Ciphers
	Slide 31: Other Attacking Building Blocks
	Slide 32: Aside: Entropy Visualization
	Slide 33: Aside: Entropy Visualization (cont’d)
	Slide 34: Aside: Entropy Visualization (cont’d)
	Slide 35: Attacks on Building Blocks Section Summary
	Slide 36: Protocols
	Slide 37: Protocols
	Slide 38: Protocol: Simple Authentication
	Slide 39: Protocol: Message Authentication Codes (MAC)
	Slide 40: Protocol: Digital Signatures
	Slide 41: Protocol: Challenge-Response (C-R)
	Slide 42: Protocols Section Summary
	Slide 43: Attacks on Protocols
	Slide 44: Attacks on Protocols
	Slide 45: Attacks on Simple Authentication
	Slide 46: Attacks on MAC
	Slide 47: Attack on Digital Signatures
	Slide 48: Attack on Challenge-Response: Middleperson Attack (in General)
	Slide 49: Attacks on Protocols Section Summary
	Slide 50: Protocol: WPA2
	Slide 51: WPA2
	Slide 52: WPA2 Handshake
	Slide 53: Attacks on WPA2
	Slide 54: Attacks on WPA2 (cont’d)
	Slide 55: Hands-On: 1 Minute Challenge
	Slide 56: Protocol: WPA2 Section Summary
	Slide 57: Protocol: TLS / SSL
	Slide 58: Protocol: TLS / SSL
	Slide 59: Certificates?
	Slide 60: How Clients Are Supposed to Authenticate Servers
	Slide 61: Client Implementations of Server Authentication
	Slide 62: Middleperson (aka MiTM) Attacks
	Slide 63: Certificate Substitution Attacks (on Type 2)
	Slide 64: Trust Store Attacks (on Type 3)
	Slide 65: Types 4-5 Attacks
	Slide 66: Other Attacks (on all types)
	Slide 67: Protocol: TLS / SSL Section Summary
	Slide 68: Protocol: UDS Seed-Key Exchange
	Slide 69: UDS
	Slide 70: UDS Authorization
	Slide 71: Seed-Key Exchange
	Slide 72
	Slide 73: 5 Minute Hands-On: Derive the Seed-Key Routines
	Slide 74
	Slide 75: Protocol: Seed-Key Exchange Section Summary (see UNABRIDGED for missing STUFF)
	Slide 76: Closing
	Slide 77: Summary
	Slide 78: Resources for Continued Learning

