
Cryptography Session:

”How Crypto Gets Broken (by YOU)”

0x74776f616e646168616c66686f7572732121th Ed.

CyberTruck Challenge™ 2023

1

About Me

 Ben Gardiner

 Senior Cybersecurity Research Engineer

contractor 🎉at NMFTA 🎉

 Experience: Embedded systems dev, RE

 CyberTruckTM Challenge Instructor

 DC HHV & CHV volunteer

 SAE volunteer

linkedin.com/in/Ben0L0Gardiner

github.com/BenGardiner

@BenLGardiner

Thanks to:

3

@Sagefault + @KennethSalt + Dr. Jeremy Daily

And the CyberTruck Challenge™ Event

previously presented at:

CyberTruck Challenge™ 2018-2022 / HF2020
& 2021 / NorthSec 2021

Agenda

❑ We will break regularly for

questions at section breaks

❑ But also feel free to ask

questions anytime

❑ Much material from the following

reference:

Anderson, Ross. Security

engineering. John Wiley & Sons,

2008.

❑ Buy this book!

❑ Prev. editions are also free!

www.cl.cam.ac.uk/
~rja14/book.html 4

Challenge: Decrypt ‘Crypto’ 10

Building Blocks 20

Challenge: Break Hashes 10

↘Attacking Building Blocks 10

Challenges: Break Crypto, others 35📈

Protocols 15

↘Attacking Protocols 10

Protocol: WPA2 (↘ Attacks) 5📈

Protocol: TLS / SSL (↘ Attacks) 20📈

Protocol: UDS Seed-Key Exchange (↘ Attacks) 10

Challenge: Derive the UDS Routines 5

150 mins

Lightly Compressed. See 2021

UNABRIDGED for follow-up details

https://www.cl.cam.ac.uk/~rja14/book.html
https://www.cl.cam.ac.uk/~rja14/book.html

5

‘Crypto’

Crypto Building Blocks

6

Encryption

❑ Encryption – an encoding which can be reversed (given a key)

❑ A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E)

using a key (K)

E = {M}K

❑ Decryption is possible with the cipher, the ciphertext, and the key

❑ e.g. AES, RSA, ECC, 3DES, …

❑ Something that’s not encryption: base64 (e.g.
ZS5nLiB0aGlzIGJhbG9uZXkgcmlnaHQgaGVyZQ==)

8

Hands-On: 10 Minute Challenge

’Decrypt’ these (you’re actually decoding):

❑ d2VsY29tZSB0byBIRjIwMjA=

❑ c2VudGluZWw=

These are base64 encoded (not encrypted).

This might seem obvious to some – but it is not uncommon to encounter

base64 ‘encryption’ in the wild.

Here’s a handy set of tools for this:

https://web.archive.org/web/2021/http://rumkin.com/
Also python/jupyter: import base64; base64.b64decode('xxx')

https://web.archive.org/web/2021/http:/rumkin.com/

Hashes
❑ (Cryptographic) Hashes – not an

encoding & not reversible

❑ Different than the larger, general
class of hash functions

❑ For a crypto. hash function f:
given f(x) you can’t find (guess or
calculate) x

❑ i.e. shouldn’t be able to find input x for:
3947cdf52a551de4983746545a1affdb2b04f4a2 or
21232f297a57a5a743894a0e4a801fc3
(actually, this one is easy)

➢ aka One-way Functions

➢ aka Random Functions

➢ aka Shortcut Functions

➢ aka One-way Compression

Functions

➢ aka Digests

❑ e.g. SHA-1, SHA-256, BLAKE, …

❑ not a cryptographic hash: MD5

10

‘Classic’ vs Modern Crypto
❑ ’Classic’ Crypto

❑ Mostly pre-20th century

❑ Deals with alphabets: input & output

❑ e.g. shift cipher (Cesar cipher)

🔠🔠🔠…🔠🔠🔠 🔀 qbag qrpvcure guvf

❑ e.g. substitution cipher, polyalphabetic substitutions, transpositions etc.

❑ It is still encryption – the ‘key’ is the knowledge of the mapping (shift, letter-
map etc.)

❑ Relevance today: puzzles, challenges and easy reverse engineering

❑ Modern Crypto

❑ Deals with numbers: input & output

❑ Text is treated as numbers via encodings – ASCII or UTF-8 is the most likely
encoding
e.g.
646f6e742064656369706865722074686973 ⨁ (00…10) ➡
646e6c77246163646179626e7e2d7a677962

* Matt_Crypto, wikipedia, Public

Domain

11

Stream Ciphers
❑ One-Time Pad (OTP) – the only proven

secure encryption scheme

❑ Uses random key-stream, of length

equal to or greater than the

message

❑ Then combine key-stream with
message (assume XOR)

❑ Stream Ciphers – approximate the OTP

❑ Expand short key into pseudo-

random keystream

❑ Then XOR (⨁) (^)

❑ e.g. RC4, Salsa20, FISH

❑ note: IV – initialization vector. It shouldn’t

need to be secret

Di Kyle Siehl - Self-made, based on raster w:Image:Wep-crypt.png, which was taken with permission

from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1806804

12

Block Ciphers

❑ Block Ciphers – different approach

❑ Uses a key and fixed-length inputs (blocks)

❑ Combined with previous outputs and more fixed-length inputs in various

modes:

❑ ECB, CBC, PCBC, CFB, OFB, CTR … GCM(!)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434116

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434096

13

Symmetric / Asymmetric Crypto
❑ Symmetric Crypto – can be encrypted + decrypted by any party with the SAME key

❑ e.g. any of the crypto we’ve discussed so far

❑ Asymmetric Crypto – can be encrypted by any party for a specific recipient

❑ aka public-key cryptography

❑ Leverages certain problems that are hard in one way & easy in the other: prime

factorization and discrete logarithms

❑ Keys exist as pairs of public & private halves -- key-pairs

❑ The party with the private key can decrypt & sign (more on signatures later)

❑ Any parties with the public key can encrypt & verify

➢ e.g. RSA, ECC

❑ e.g.
-----BEGIN RSA PRIVATE KEY-----
izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJgCQuuvT+qZI
…

Crypto Building Blocks

Section Summary

❑ Encryption… it hides information, binds it – protects confidentiality, but not integrity
(without additional effort)

E = {M}K

❑ (Crypto) Hashes – one-way functions. With f(x) you cannot get x

❑ ’Classic’ Crypto – involves alphabets not numbers

❑ Stream Cipher – combine a sequence of key bits with a sequence of cleartext bits with
XOR (⨁) (^)

❑ Block Ciphers – have a limited key stream, but extend to larger cleartext sequences

❑ Not all block cipher modes are created equal (e.g. Electronic Coloring Book (ECB))

❑ Symmetric Crypto – all parties share the same key

❑ Asymmetric Crypto – only one party has the decryption key (private key)

Attacks on Building Blocks

15

Attacking Hashes
❑ Google.

❑ Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

❑ Identifying what type of hash you have in-hand will be useful – the length gives it away

❑ If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector

❑ Hash Crack sites

❑ hashcat tool

❑ (ab)uses your GPU for rapid hash cracking

❑ Rainbow Tables

❑ ’halves’ / parts-of hashes pre-built and ready to go

❑ For things like MD5 these are trivial

❑ For things like SHA-256 these are huge (multi-TB)

❑ You can pick-up pre-generated tables at DEFCON Data Duplication Village. Bring a 6 TiB HDD.

❑ And cooler things like hash-length extension attacks

17

Cooler Attacks on Hashes
❑ Hash-Length Extension Attacks

❑ Take a known H(‘start’) and add to it
to get: H(‘start’ + junk)

❑ Get to a known identical hash for
‘start’ and ‘start’ + junk

❑ Taking Advantage of File Formats

❑ PDF has lots of place to hide
information

❑ See Ange Albertini’s work on PDF
polyglots

❑ This can be leveraged to create
PDFs with the same SHA-1

❑ https://shattered.io/ 😎

https://shattered.io/

18

More on Attacking Hashes

❑ Salts

❑ Because it’s pretty easy to lookup or build a table of known inputs for

hashes; designers tend to follow the best practice of ’salting’ their inputs

❑D033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)

❑3947cdf52a551de4983746545a1affdb2b04f4a2 = SHA1(‘saltadmin’)

❑ Salts are usually pre-prepended onto the input; sometimes with a separator

like ‘.’ or ’+’

❑ hashcat can find a salt for a given hash and input pair.

❑ hashcat can also find inputs for hashes with a given salt as a parameter.

❑Find the salt with one known hash first.

❑OR find the salt with research (some systems’ password salts are well-known)

19

Still More on Attacking Hashes

❑ Password lists

❑ Brute-forcing (all possible character
combinations) for inputs to hashes is
possible

❑ ‘password lists’ are more useful. There are
hundreds of these to choose from, most
from data breaches over the past years.

❑ In CTFs the rockyou list is the most
common – but for applied hash cracking:

YMMV.

❑ This is more generally known as a
dictionary attack

20

Hands On: 10 Minute Challenge

Reverse these hashes:

❑5f4dcc3b5aa765d61d8327deb882cf99

❑5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

❑ecadec2924e86bf88d622ceb0855382d

❑ff4827739b75d73e08490b3380163658

❑6ce3bb6eb450df7d6345151ec00e4a4e

We’ve mentioned the tools you need for this.

Some are easy. One is not (hint: 2 character salt)

Attacking ‘Classic’ Crypto
❑Historically, frequency analysis was the undoing of classic crypto

❑ Letter use in a language (e.g. English) has a predictable #
occurrences (frequency)

❑ Count the number of occurrences of a symbol in ciphertext; match
to expected rate in language

❑ Requires medium-large ciphertext for analysis to work

❑Today (challenges/puzzles/RE):

❑ Try shift ciphers (start with ROT13)

❑ Then try a substitution cipher

❑ Then have ‘fun’ :
https://web.archive.org/web/2021/http://rumkin.com/

https://web.archive.org/web/2021/http:/rumkin.com/

Hands On: 5 min Classic Crypto Attack Example

❑ E->B? E->A ? E->R ?

❑ Try them all: https://web.archive.org/web/2021/http://rumkin.com/

❑ Shift 13 (aka ROT-13):

❑ “Cybertruck 2018 for the win! A huge thank you needs to go out to our
sponsors. This pro-industry event depends on active sponsor involvement and
support.”

Ploregehpx 2018 sbe gur jva!
N uhtr gunax lbh arrqf gb tb bhg gb bhe fcbafbef. Guvf ceb-vaqhfgel
rirag qrcraqf ba npgvir fcbafbe vaibyirzrag naq fhccbeg.

🙈

https://web.archive.org/web/2021/http:/rumkin.com/

23

Stream Cipher Attacks
❑Re-used Key Attack

❑ Recall: it’s all about XOR (⨁) (^)

❑ If I know A^B and I know A or B, I can get the other

❑ Anytime a stream cipher re-uses keys, it’s a problem

❑ if I have E1 = A^K and E2 = B^K I can get A^B

❑ this is a big deal if:

❑A, B are natural language (use running key cipher attacks on A^B) or if

❑A, B are different lengths or if

❑we can control A or B or if

❑we can make any guesses about A or B

24

Hands On: 10 Minute Challenge

Break these stream-ciphertexts

And get the key

❑ad9bc999b790c281

❑b69895ddecce86cc

❑ it’s all about XOR (^)

❑ gchq.github.io/CyberChef/ is great for playing around with
XOR

❑ Key is 32 bits / 4 bytes

❑ I’m lazy (I re-use things)

❑ ‘sentinel’ ^ 0xDEFEA7ED // ‘hf2020!!’ ^ 0xDEFEA7ED

🙉

25

Block Cipher Attacks

❑Getting impractical now…

❑Goals: forgery or key-recovery

❑ Block Cipher Attack Models

❑ known plaintext: attacker is given a set of pairs of cleartext+ciphertext

❑ chosen plaintext: attacker has the ability to query cleartext and receive
ciphertext

❑ chosen ciphertext: attacker has the ability to query ciphertext and receive

cleartext

❑ chosen plaintext/ciphertext: attacker has the ability to query either

❑ related key: attacker has the ability to query with key related to specified
key, K (e.g. K+1 K+2, ...)

26

Padding Oracle Attacks

❑An example chosen ciphertext attack:

❑Padding oracle attack: attacker supplies ciphertext, detects ‘incorrect

padding’ error conditions – can use this oracle to ultimately decrypt

messages

❑Surprisingly common

27

Cryptanalysis and More

❑ Linear Cryptanalysis

❑ solving for linear relationships between
cleartext (input) and ciphertext
(outputs)

❑ at fractional likelihoods

❑ using the likelihoods to sometimes
predict ciphertext from cleartext

❑ 'correct' crypto is designed to resist
these attacks

❑ Differential Cryptanalysis

❑ solving for sensitivity relationships of
changes to cleartext bits (input) onto
ciphertext bits (outputs)

❑ at fractional likelihoods

❑ then use any high likelihoods to guide
attacks with chosen inputs

❑ Modern ‘correct’ crypto is design to
resist these attacks too

❑ Other Cool Stuff: Slide Attack, XSL Attack,
Impossible Differential, Boomerang, ...

28

Reality Check
❑ We talked about attack models & attack goals; some families of attacks

❑ No simple attacks after ‘Classic’ crypto

❑ Few practical attacks

❑ Attacking Crypto these ways is hard, for ’correct’ crypto:

❑ e.g. SHA-256, AES-128, RSA-2048, ECC w/ curve 25519

❑ For incorrect crypto (e.g. anything else)

❑ Is it XOR ‘Crypto’? ➡ Try XOR ciphertexts together; try XORing it with good guesses too

❑ OR Are there repetitions of data patterns in the ciphertext? Maybe it is ECB mode or maybe it is key-reuse in a

stream cipher

❑ OR If you know the name of the crypto, use google – maybe you will find tool or PoC to break it

❑ But it’s not impossible

❑ People build protocols out of these building blocks – protocols get broken more often

❑ (and don’t forget side-channel attacks and software exploitation)

29

Hands-On: 10 Minute Challenge

Decipher the following strings:

Lqydolg#Sdvvzrug$ Sdvvzrug#RN$$$#=,

Hints:

❑ from the IOLI crackme challenges:

pof.eslack.org/tmp/IOLI-crackme.tar.gz

❑ ‘Sdvvzrug’ shows up in both strings, this tells you something

❑ ‘#’ is 0x35 and ‘$’ is 0x36

❑ ‘ ’ is 0x32 and ‘!’ is 0x33

❑ https://web.archive.org/web/2021/http://rumkin.com/

Done? Already? Do a ‘beginner’ challenge at potatopla.net/crypto/

🙊

https://web.archive.org/web/2021/http:/rumkin.com/

Other Attacks on Block Ciphers

❑ Recognizing ciphertext blocks can let you
decrypt them:

maybe not to their contents, but to their meaning

 (Sometimes also their contents; e.g. infer all-zeroes
input)

❑ Use viz tools: vix, radare2, binvis.io, Veles, hobbits

https://github.com/pakesson/diy-ecb-penguin

=AES_ECB()

http://binvis.io/#/

31

Other Attacking Building Blocks
❑ Software Exploitation can yield both control of the software and also

information leaks

❑ Access to process memory can be fruitful key extraction attacks

❑ Multiple tools are available to scour memory for keys:

 e.g. aeskeyfind, radare2, volatility

❑ Reverse engineering of the program code in memory can yield pointers to
the memory locations of keys

❑ Don’t underestimate the downplayed Infoleak vulnerabilities

❑ c.f. Heartbleed

32

Aside: Entropy Visualization

 Entropy (in the sense of C. Shannon) is a metric of information-density in

message/value/bit-sequence

 It turns out (thanks also to Shannon) that information is maximized when the

likelihood of 1/0 are equal

 i.e. ‘completely random’ IS highest entropy.

 The entropy of a bitsequence can be estimated

 Estimated entropy approaches 1.0 for random number sequences

 Next-closest to 1.0 is ‘correct’ crypto

 Then compressed data

 Estimated entropy is not high for other data (structured data)

33

Aside: Entropy Visualization (cont’d)

❑The entropy estimates can be broken-up over a large input and

visualized

❑You can identify and distinguish between

❑ encrypted (correct) content

❑ Other encrypted (incorrect) content

❑ Compressed content

❑Rules of thumb:

❑ Compression looks like pretty high entropy

❑ Encryption looks like really high entropy

34

Aside: Entropy Visualization (cont’d)

AES ECB AES CBC

Image

binvis.io

entropy

binwalk

Attacks on Building Blocks Section Summary

❑ Hash Attacks – collisions, pre-image etc. use google. All other practical (for us mortals)
attacks are in hashcat, use it.

❑ Classic Crypto Attacks – frequency analysis. Try simple things first, use cryptogram tools,
ID the cipher and try cipher-specific attacks

❑ Stream Cipher Attack – Reused Key Attack. i.e. try XOR (^) things together, make
guesses

❑ Block Cipher Attack Models – probably impractical but use the right search terms

 Except ECB: recognize patterns

❑ Don’t forget about software exploitation; in-memory attacks.

❑ Breaking protocols is more fruitful (next sections)

❑ Remember these tools:

 https://web.archive.org/web/2021/http://rumkin.com/

 CyberChef: https://gchq.github.io/CyberChef/

 Visualization tools: binwalk -E, radare2, binvis.io, Veles, hobbits

https://web.archive.org/web/2021/http:/rumkin.com/
https://gchq.github.io/CyberChef/
http://binvis.io/#/

Protocols

36

Protocols

❑ Protocols – the rules that govern the communication between parties

❑ What information is transmitted from party A to party B?

❑ What steps must party B perform?

❑ What information must be sent in reply (if any)?

❑ etc.

A B

38

Protocol: Simple Authentication
❑ Simple Authentication:

❑ Source: wants to be authenticated by the target

❑ Target: decides if source is authentic

❑ The source sends:

 its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key
(KT) that could be specific to the ID and also is known to the target.

❑ The target:

❑ looks-up encryption key KT from given ID T;

❑ decrypts the {…}KT and checks the nonce N hasn’t been seen before.

► Nonce : Number used ONCE

(e.g. older keyfobs / garage door openers – source is the fob, target is the car or garage door.)

source target

T|{T|N}KT

Protocol: Message Authentication Codes (MAC)
 Message Authentication Codes: for a message, create a value that can enable the message to be

verified by any party with the shared key (the same shared key that is used to create the value). e.g.:

 CBC-MAC – build a MAC with CBC chaining mode of a block cipher

 CMAC – also uses a block cipher

 HMAC – build a MAC with a hash function

 CBC-MAC-AES128, HMAC-SHA1, etc.

 Parties receiving messages that don’t verify against the key (shared in this case) shall discard messages

 How the shared keys are distributed and how messages are discarded is additional protocol details
(for the next layer of the protocol specification)

➢ aka Message Integrity Code (MIC)

➢ aka protected checksums

➢ Not a MAC: a message digest: f(M) where f is a hash function.

source target

M|’MAC’

Protocol: Digital Signatures
 Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to

be verified by any party with the public key but cannot be created by any party without the private key.

 a signing party with a private key can create a signature

 parties with the public key can verify that signature

 e.g. DSA, ECDSA. Let’s consider a simple, older RSA signing:

 Send message, M, and signature together

 To verify: Decrypt {H(M)}k and assert it is equal to H(M), where H is a cryptographic hash and k is the RSA
private key

 In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

 How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

 e.g. what if they sent: K|M|{H(M)}k where K is the public key?

source target

M|{H(M)}k

41

Protocol: Challenge-Response (C-R)
 Source wants to be authenticated by the target

 Source receives a nonce as challenge

 Transforms it and replies as response

 An ideal C-R would make it impractical for an attacker to guess the secret by observing
traffic of multiple C-R exchanges.

 If attacker sees both challenge and response ➡ known plaintext attack

source target

=

Ready

Challenge: N

Response: f(N)

PASS / FAIL

f(・)f(・)

rand()

Crypto Crypto

Protocols

Section Summary

 Protocols – the rules that govern the communications between parties

 Digital Signatures – can be created by parties with the private key but verified by

anyone with the public key (built from asymmetric crypto)

 Message Authentication Codes (MAC) – can be created and verified by any party with

the key (can be built from symmetric crypto)

 Nonce “number used once” – can be random or a counter …

 Simple Authentication – source send its ID and an encrypted ID+nonce pair to a target

for verification

 Challenge Response – target sends nonce to source; source replies with some proof
that it has an ID known to the target

 e.g. nonce encrypted with key known to source

 e.g. nonce transformed with parameters known to source

Attacks on Protocols

43

Attacks on Protocols

Generally: try to break the assumptions of the protocol

This actually generalizes to “How to attack any specification”:

 Anywhere the specification says SHALL/SHOULD – see what
happens when it DON’T…

Attacks on Simple Authentication

 Simple Authentication assumes nonce N hasn’t been seen before

 If the nonce is random:

 Does it actually check? ➡ Send again (Replay Attack)

 How many nonces does it store? ➡ Send +1 (Valet Attack)

 If the nonce is a counter:

 How does it resynchronize? ➡ Try sending counter guesses (Bad counter resync
attack)

 Simple Authentication assumes that the key KT is associated with the ID T and

 Are there other T that could associate with KT? ➡ Try sending to other target (Key
collision attack)

46

Attacks on MAC
 For digests

 Recall: these aren’t actually MACs – but they get used that way occasionally

 Recall: you will know the input, i.e. you will have at least one digest+message pair

 You need to identify digest algorithm – length usually gives it away; also see tools
like cothan/hashdetector

 You may need to identify the salt also – hashcat can do this

 For HMAC- MD5, SHA1, …:

 hashcat can crack the key or salt given a hmac+message pair

 Software exploitation, ‘confused deputy’

 Software exploitation could enable control of what messages are sent by a piece of
SW designed to send mac+message pairs.

 Yields a successful forgery attack unless other software-integrity measures are taken.

47

Attack on Digital Signatures
 Recall the RSA Signature example: Send message, M, and signature together

M|{H(M)}k

 Agreeing on the K public key for the k private key is a critical part.

 What if the protocol includes the public key K?

K|M|{H(M)}k

 Then an attack is to use your own private/public key pair a/A and send:

A|M|{H(M)}a

 Watch out for this broken protocol (sending the pubkey). It happens sometimes…

 More generally: try to find ways to substitute the expected public key K for your key, A

 Stored in flash somewhere?

48

Attack on Challenge-Response:
Middleperson Attack (in General)

 Interposing an actor in-between the source and target
➢ aka MiTM

 Enables tampering with the contents, ordering, timing etc.

 Good concept for attacks on specific Challenge-Response protocols

 Definitely applicable in TLS/SSL attacks when you can interpose

 Can even be effectively achieved without physical interposition if messages can be
selectively denied (e.g. CANT or CANHack attacks)

source target

=

f(・)f(・)

rand()

Attacks on Protocols

Section Summary

 Attacks on protocols are more fruitful than attacks on building blocks

 Simple Authentication Attacks

 Key Collisions – e.g. 16bit serial number used as input to key

 Key Extraction and Extension – e.g. Keeloq

 Replay Attack – capture one or more, replay selectively

 Valet Attack – capture a large set during temporary but extended possession

 Bad Counter Resynchronization – depends on resync behavior of protocol

 MAC

 Digests (broken), Hash breaking HMACs, shared-key reuse for MACs

 Digital Signature Attacks

 Public key substitution

 Challenge-Response Attacks

 Middleperson Attack

 (and more coming up in later section)

Protocol: WPA2

WPA2

 Wi-Fi Protected Access 2

 Wi-Fi confidentiality measure

 Supersedes WEP (which was a very broken protocol)

 WPA2-Personal (-PSK)

 uses a pre-shared key.

 Each client (supplicant in WPA-speak) gets its own session key

 Setup of the key is visible at different levels.

 WPA2-Enterprise

 Enables authentication of the Access-point

 All communication with the Access-point is done with individualized keys

 Let’s discuss WPA2-Personal

WPA2 Handshake

4-way handshake

 A nonce

 Then another nonce with MAC

 Then a global key with MAC

 Then an ACK

Grossly over-simplified

Supplicant
(client)

Access
point

Key (& MAC)

Ack

Client starts

using (installs)

session key

here.

Nonce (& MAC)

Nonce

53

Attacks on WPA2

There is a MAC, implemented as a HMAC which is sent by supplicants and derived from

the pre-shared key

 Hash attacks to reverse this

 There are advantages to having observed multiple nonce & MAC -- so the

attack starts with causing the target to deauthorize from the Wi-Fi (repeatedly)

 hashcat can do the cracking, but not the de-auth

 airocrack-ng can do both

54

Attacks on WPA2 (cont’d)

 There is a key reuse vulnerability in some client
software, dubbed KRACK

 When the key is ‘installed’, the client resets its
communication counters

 By replaying message 3 in the handshake,
counters can be reset repeatedly – key reuse
attack

 Some systems were even vulnerable to
installing a null-key by sending a tampered 3rd

message

 Fun-fact: WPA2 had been formally-proven secure.

 The spec of the formal proof did not include
”keys must be ‘installed’ once and only once”

Ack

Nonce (& MAC)

Nonce

0x00…00(& MAC)

Ack

Nonce (& MAC)

Nonce

Key (& MAC)

Key (& MAC)

https://www.krackattacks.com/

https://www.krackattacks.com/

55

Hands-On: 1 Minute Challenge

Capture as many users of the Cybertruck Wi-Fi as you can in 1 minute.

I’m kidding – please don’t attack the Wi-Fi. I’m

using it.

❑ KRACK is unnecessary – your systems all know the WPA2 password

already (it is a pre-shared key)

❑ How this would work :

❑ ’de-auth’ other clients so you could witness their handshake with

the Access Point.

❑ At which point you would have their session key and could

decrypt all their traffic.

56

Protocol: WPA2

Section Summary

WPA2 Passwords can be cracked, indirectly, via the hashes exposed in the

handshake

 The process is accelerated by capturing multiple 4-way handshakes, so

the attack usually also includes a flood of de-authenticating the clients

WPA2 keys can be reinstalled (KRACK)

 Re-installing a key resets counters – this gives a key reuse attack

 Sometimes WPA2 keys can be nulled (KRACK)

 Then follow up with known-key attack (v. simple in this case)

 These attacks on Wi-Fi require clients are connected

Protocol:

TLS / SSL

57

Protocol: TLS / SSL
 Transport Layer Security (TLS). Was SSL, now that name is deprecated

 Used in HTTPS – but can be found without HTTP

 Provides both confidentiality and authentication of endpoints

 typically client authenticates server

 Sometimes server also authenticates client -- we’re not going cover this

?

…

…
connect

certificate

59

Certificates?

Chains of Digital Signatures (asymmetric crypto)

 Recall: only the owner of the private part of a public key-pair can:

 decrypt traffic encrypted to the public key

 create a signature verifiable by anyone with the public key

By Yanpas - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=46369922

60

How Clients Are Supposed to Authenticate Servers

in?

Trust Store

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46369922

61

Client Implementations of Server Authentication

NB: The proxies will work out-of-the-box on Type 1 and Type 2

“Type” Trust

Type 1 Trust anything (no SSL/TLS)

Type 2 Trust any valid certificate

Type 3 Trust any root-CA in OS Trust Store

Type 4 Trust only (pin) the pub key of certificate

Type 5 Trust only (pin) the pub key of cert. signer

Type 6 Pinning and Integrity Verification0xc0de

62

Middleperson (aka MiTM) Attacks

• HTTP Proxies: mitmproxy, Burp, ZAP, martian

• Non-HTTP: MiTMF, ettercap, bettercap, SSLSplit

• Some require that you setup the proxy as a gateway -- some can work as a

sibling (leveraging ARP poisoning)

63

Certificate Substitution Attacks (on Type 2)
 Proxy creates two TLS connections

 Upstream, client connection to server – normal, valid, nothing to see here

 Downstream, served to client – supplies some other certificate

 Type 2 client sees ‘a cert’ and is happy

?

…

…
connect

certificate

…

…
connect

‘certificate’

Trust Store Attacks (on Type 3)

Can you add a root certificate authority to the trust store?

 If you have UI access to an Android device the answer is probably yes

Can you use a compromised root certificate that is already in the trust store?

 There have been several compromised root certificates over the years

(Komodo, Symantec)

 If the devices is old enough, the compromised root certificate might be in

its trust store

 Forge a server certificate signed with the secret from the compromise root;
install that in the proxy (e.g. mitmproxy, Burp, etc.)

Getting the compromised secret is… the tricky part

65

Types 4-5 Attacks
 Recall: types 4-5 use certificate pining – they will only accept a connection from a

server with a particular expected public key

 If a different public key is supplied they abort connections

 Software Exploitation is the only remote attack

 If you have superuser privileges on the systems executing the type 4-5 app then
there are simple ways to replace the expected pub key or bypass the abort
connection response:

 Patch the pubkey from the software

 Runtime hooking: e.g. Universal Android SSL Pinning Bypass with Frida
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-
with-frida/

 The runtime integrity checks will prevent most patches, hooks and exploits.

Types 6 Attacks

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

66

Other Attacks (on all types)

 SWEET32 – monitor long-lived Triple-DES and recover cookies

 DROWN – break confidentiality of some TLS (downgrade)

 Logjam – break confidentiality and integrity of some TLS (downgrade)

 POODLE – break confidentiality and integrity of some TLS (downgrade)

 Not very practical – only PoCs available : poodle-PoC , Tim---/drown , drownAttackDemo

 There are even passive differential cryptanalysis attacks – working only at large-scale and long
time periods

 Recover a RSA private key from a TLS Session with Perfect Forward Secrecy – Marco Ortisi

 Other ‘other attacks’ (not confidentiality or integrity compromising):

 Heartbleed – exploit memory leak in some OpenSSL versions to view 64K of server memory
(in theory could yield a server secret)

Protocol: TLS / SSL

Section Summary
 TLS (SSL is deprecated) sets up a channel with confidentiality and authentication

 Confidentiality is established with key-exchange

 Authentication is established with certificate chain verification – the chain ultimately ending in
an authority in a trust store of the endpoint

 TLS/SSL middleperson attacks require a network interposition and include:

 Abuse of endpoints not checking certificate chains

 Abuse of trust-stores – adding new authorities into them, or convincing users to do it

 (rare) crypto breaks to obtain session or master keys

 (less rare) forced downgrade to TLS/SSL version with publicly broken crypto

 Other TLS/SSL Attacks (some are aforementioned rare crypto breaks):

 SWEET32, DROWN, logjam, POODLE, Heartbleed

 Tools:

 mitmproxy, Burp, ZAP, MITMf

 poodle-PoC , Tim---/drown , drownAttackDemo

Protocol: UDS Seed-Key Exchange

68

69

UDS
 Unified Diagnostic Services – ISO 14229 ; on CAN: ISO 15765

 Used for nearly ALL vehicle Diagnostic Protocols

 You will learn a lot about it in other sessions today and tomorrow

 There are actions in UDS that are protected. To execute the action requires

authorization: e.g.

 Read memory

 Reflash ECUs

 Perform potentially dangerous maintenance operations

➢ aka ‘the fun stuff’

70

UDS Authorization

 Sometimes UDS is helpful; it will tell you that you need to authorize

 Negative Response Code : SecurityAccessDenied

 You’ll learn about these

 To authorize; unlock the current session with SecurityAccess Seed-Key Exchange

 ‘Session holder’ (server) emits a ‘seed’; ‘session user’ (client) returns a ‘key’

 Service 0x27 (replies on 0x67)

 Subfunction 0x05 for requestSeed / 0x06 for sendKey

 You’ll know more about these soon

71

Seed-Key Exchange
Seed-key exchange is a Challenge-Response Protocol

Only 16-bit space; so it might not fit our ideal characteristics of resisting known plaintext

forgery attacks

The ‘seed’ here is a challenge and the ‘key’ here is a response

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

72NB: J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

Daily J., COMVEC15, A Digital Forensics Perspective …

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

73

5 Minute Hands-On:

Derive the Seed-Key Routines
1 2 3

18DAF100#0467055b31
18DA00F1#0427065c31
18DAF100#0467053632
18DA00F1#0427063732
18DAF100#0467052c31
18DA00F1#0427062d31
18DAF100#0467053839
18DA00F1#0427063939

18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435

18DAF100#0467052c31
18DA00F1#0427060005
18DAF100#0467053132
18DA00F1#0427061d06
18DAF100#0467053732
18DA00F1#0427061b06
18DAF100#0467053137
18DA00F1#0427061d03

74

‘Crypto’

75

Protocol: Seed-Key Exchange

Section Summary (see UNABRIDGED for missing STUFF)

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

 SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

 If you have diagnostic software:

 Reverse the key algorithm & parameters from PC software

 Black-box / Lift the key algorithm & parameters

 If you have ECU firmware:

 Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

 If you have some captures of successful SecurityAccess:

 Solve for unknowns in a known formula from related ECUs

 Retry seeds until a match occurs with one in the captures

 If you have only the ECU:

 Brute-force (can you control the seed?)

 Get some captures (e.g. service center) – see above

 Glitch past the check – be amazing

Closing

76

Summary

 ’Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

 ’Crypto is hard’ → means correct crypto is hard to break, if you have only the capture

of communications

 Crypto building blocks don’t get broken very often (given only the capture of comms)

 Crypto protocols get broken

 Crypto gets broken via side-channels

 Crypto gets broken by compromise of execution environment

 You can middleperson-attack TLS/SSL

 You can lift/reverse/solve/brute-force Seed-Key Exchange

78

Resources for Continued Learning

• Cryptopals (CTF), T. Ptacek et. al.

• Let’s Play with Crypto (Pres.), Ange Albertini

• Any and all SO answers by Thomas Pornin

• Security Engineering (Book), Ross Anderson

• PotatoSec Crypto Puzzle Challenges

• POC||GTFO (Journal), mirror

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://stackoverflow.com/users/254279/thomas-pornin?tab=answers
https://www.cl.cam.ac.uk/~rja14/book.html
https://www.potatopla.net/crypto/
https://www.alchemistowl.org/pocorgtfo/

	two and a half hours !! ed
	Slide 1: Cryptography Session: ”How Crypto Gets Broken (by YOU)” 0x74776f616e646168616c66686f7572732121th Ed.
	Slide 2: About Me
	Slide 3: Thanks to:
	Slide 4: Agenda
	Slide 5: ‘Crypto’
	Slide 6: Crypto Building Blocks
	Slide 7: Encryption
	Slide 8: Hands-On: 10 Minute Challenge
	Slide 9: Hashes
	Slide 10: ‘Classic’ vs Modern Crypto
	Slide 11: Stream Ciphers
	Slide 12: Block Ciphers
	Slide 13: Symmetric / Asymmetric Crypto
	Slide 14: Crypto Building Blocks Section Summary
	Slide 15: Attacks on Building Blocks
	Slide 16: Attacking Hashes
	Slide 17: Cooler Attacks on Hashes
	Slide 18: More on Attacking Hashes
	Slide 19: Still More on Attacking Hashes
	Slide 20: Hands On: 10 Minute Challenge
	Slide 21: Attacking ‘Classic’ Crypto
	Slide 22: Hands On: 5 min Classic Crypto Attack Example
	Slide 23: Stream Cipher Attacks
	Slide 24: Hands On: 10 Minute Challenge
	Slide 25: Block Cipher Attacks
	Slide 26: Padding Oracle Attacks
	Slide 27: Cryptanalysis and More
	Slide 28: Reality Check
	Slide 29: Hands-On: 10 Minute Challenge
	Slide 30: Other Attacks on Block Ciphers
	Slide 31: Other Attacking Building Blocks
	Slide 32: Aside: Entropy Visualization
	Slide 33: Aside: Entropy Visualization (cont’d)
	Slide 34: Aside: Entropy Visualization (cont’d)
	Slide 35: Attacks on Building Blocks Section Summary
	Slide 36: Protocols
	Slide 37: Protocols
	Slide 38: Protocol: Simple Authentication
	Slide 39: Protocol: Message Authentication Codes (MAC)
	Slide 40: Protocol: Digital Signatures
	Slide 41: Protocol: Challenge-Response (C-R)
	Slide 42: Protocols Section Summary
	Slide 43: Attacks on Protocols
	Slide 44: Attacks on Protocols
	Slide 45: Attacks on Simple Authentication
	Slide 46: Attacks on MAC
	Slide 47: Attack on Digital Signatures
	Slide 48: Attack on Challenge-Response: Middleperson Attack (in General)
	Slide 49: Attacks on Protocols Section Summary
	Slide 50: Protocol: WPA2
	Slide 51: WPA2
	Slide 52: WPA2 Handshake
	Slide 53: Attacks on WPA2
	Slide 54: Attacks on WPA2 (cont’d)
	Slide 55: Hands-On: 1 Minute Challenge
	Slide 56: Protocol: WPA2 Section Summary
	Slide 57: Protocol: TLS / SSL
	Slide 58: Protocol: TLS / SSL
	Slide 59: Certificates?
	Slide 60: How Clients Are Supposed to Authenticate Servers
	Slide 61: Client Implementations of Server Authentication
	Slide 62: Middleperson (aka MiTM) Attacks
	Slide 63: Certificate Substitution Attacks (on Type 2)
	Slide 64: Trust Store Attacks (on Type 3)
	Slide 65: Types 4-5 Attacks
	Slide 66: Other Attacks (on all types)
	Slide 67: Protocol: TLS / SSL Section Summary
	Slide 68: Protocol: UDS Seed-Key Exchange
	Slide 69: UDS
	Slide 70: UDS Authorization
	Slide 71: Seed-Key Exchange
	Slide 72
	Slide 73: 5 Minute Hands-On: Derive the Seed-Key Routines
	Slide 74
	Slide 75: Protocol: Seed-Key Exchange Section Summary (see UNABRIDGED for missing STUFF)
	Slide 76: Closing
	Slide 77: Summary
	Slide 78: Resources for Continued Learning

