
Cryptography Session:

”How Crypto Gets Broken (by YOU)”

0x74776f616e646168616c66686f7572732121th Ed.

CyberTruck Challenge™ 2023

1

About Me

 Ben Gardiner

 Senior Cybersecurity Research Engineer

contractor 🎉at NMFTA 🎉

 Experience: Embedded systems dev, RE

 CyberTruckTM Challenge Instructor

 DC HHV & CHV volunteer

 SAE volunteer

linkedin.com/in/Ben0L0Gardiner

github.com/BenGardiner

@BenLGardiner

Thanks to:

3

@Sagefault + @KennethSalt + Dr. Jeremy Daily

And the CyberTruck Challenge™ Event

previously presented at:

CyberTruck Challenge™ 2018-2022 / HF2020
& 2021 / NorthSec 2021

Agenda

❑ We will break regularly for

questions at section breaks

❑ But also feel free to ask

questions anytime

❑ Much material from the following

reference:

Anderson, Ross. Security

engineering. John Wiley & Sons,

2008.

❑ Buy this book!

❑ Prev. editions are also free!

www.cl.cam.ac.uk/
~rja14/book.html 4

Challenge: Decrypt ‘Crypto’ 10

Building Blocks 20

Challenge: Break Hashes 10

↘Attacking Building Blocks 10

Challenges: Break Crypto, others 35📈

Protocols 15

↘Attacking Protocols 10

Protocol: WPA2 (↘ Attacks) 5📈

Protocol: TLS / SSL (↘ Attacks) 20📈

Protocol: UDS Seed-Key Exchange (↘ Attacks) 10

Challenge: Derive the UDS Routines 5

150 mins

Lightly Compressed. See 2021

UNABRIDGED for follow-up details

https://www.cl.cam.ac.uk/~rja14/book.html
https://www.cl.cam.ac.uk/~rja14/book.html

5

‘Crypto’

Crypto Building Blocks

6

Encryption

❑ Encryption – an encoding which can be reversed (given a key)

❑ A plaintext (M) message is encrypted by a cipher ({}) to a ciphertext (E)

using a key (K)

E = {M}K

❑ Decryption is possible with the cipher, the ciphertext, and the key

❑ e.g. AES, RSA, ECC, 3DES, …

❑ Something that’s not encryption: base64 (e.g.
ZS5nLiB0aGlzIGJhbG9uZXkgcmlnaHQgaGVyZQ==)

8

Hands-On: 10 Minute Challenge

’Decrypt’ these (you’re actually decoding):

❑ d2VsY29tZSB0byBIRjIwMjA=

❑ c2VudGluZWw=

These are base64 encoded (not encrypted).

This might seem obvious to some – but it is not uncommon to encounter

base64 ‘encryption’ in the wild.

Here’s a handy set of tools for this:

https://web.archive.org/web/2021/http://rumkin.com/
Also python/jupyter: import base64; base64.b64decode('xxx')

https://web.archive.org/web/2021/http:/rumkin.com/

Hashes
❑ (Cryptographic) Hashes – not an

encoding & not reversible

❑ Different than the larger, general
class of hash functions

❑ For a crypto. hash function f:
given f(x) you can’t find (guess or
calculate) x

❑ i.e. shouldn’t be able to find input x for:
3947cdf52a551de4983746545a1affdb2b04f4a2 or
21232f297a57a5a743894a0e4a801fc3
(actually, this one is easy)

➢ aka One-way Functions

➢ aka Random Functions

➢ aka Shortcut Functions

➢ aka One-way Compression

Functions

➢ aka Digests

❑ e.g. SHA-1, SHA-256, BLAKE, …

❑ not a cryptographic hash: MD5

10

‘Classic’ vs Modern Crypto
❑ ’Classic’ Crypto

❑ Mostly pre-20th century

❑ Deals with alphabets: input & output

❑ e.g. shift cipher (Cesar cipher)

🔠🔠🔠…🔠🔠🔠 🔀 qbag qrpvcure guvf

❑ e.g. substitution cipher, polyalphabetic substitutions, transpositions etc.

❑ It is still encryption – the ‘key’ is the knowledge of the mapping (shift, letter-
map etc.)

❑ Relevance today: puzzles, challenges and easy reverse engineering

❑ Modern Crypto

❑ Deals with numbers: input & output

❑ Text is treated as numbers via encodings – ASCII or UTF-8 is the most likely
encoding
e.g.
646f6e742064656369706865722074686973 ⨁ (00…10) ➡
646e6c77246163646179626e7e2d7a677962

* Matt_Crypto, wikipedia, Public

Domain

11

Stream Ciphers
❑ One-Time Pad (OTP) – the only proven

secure encryption scheme

❑ Uses random key-stream, of length

equal to or greater than the

message

❑ Then combine key-stream with
message (assume XOR)

❑ Stream Ciphers – approximate the OTP

❑ Expand short key into pseudo-

random keystream

❑ Then XOR (⨁) (^)

❑ e.g. RC4, Salsa20, FISH

❑ note: IV – initialization vector. It shouldn’t

need to be secret

Di Kyle Siehl - Self-made, based on raster w:Image:Wep-crypt.png, which was taken with permission

from The Final Nail in WEPs Coffin, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1806804

12

Block Ciphers

❑ Block Ciphers – different approach

❑ Uses a key and fixed-length inputs (blocks)

❑ Combined with previous outputs and more fixed-length inputs in various

modes:

❑ ECB, CBC, PCBC, CFB, OFB, CTR … GCM(!)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434116

By WhiteTimberwolf (SVG version) - PNG version, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=26434096

13

Symmetric / Asymmetric Crypto
❑ Symmetric Crypto – can be encrypted + decrypted by any party with the SAME key

❑ e.g. any of the crypto we’ve discussed so far

❑ Asymmetric Crypto – can be encrypted by any party for a specific recipient

❑ aka public-key cryptography

❑ Leverages certain problems that are hard in one way & easy in the other: prime

factorization and discrete logarithms

❑ Keys exist as pairs of public & private halves -- key-pairs

❑ The party with the private key can decrypt & sign (more on signatures later)

❑ Any parties with the public key can encrypt & verify

➢ e.g. RSA, ECC

❑ e.g.
-----BEGIN RSA PRIVATE KEY-----
izfrNTmQLnfsLzi2Wb9xPz2Qj9fQYGgeug3N2MkDuVHwpPcgkhHkJgCQuuvT+qZI
…

Crypto Building Blocks

Section Summary

❑ Encryption… it hides information, binds it – protects confidentiality, but not integrity
(without additional effort)

E = {M}K

❑ (Crypto) Hashes – one-way functions. With f(x) you cannot get x

❑ ’Classic’ Crypto – involves alphabets not numbers

❑ Stream Cipher – combine a sequence of key bits with a sequence of cleartext bits with
XOR (⨁) (^)

❑ Block Ciphers – have a limited key stream, but extend to larger cleartext sequences

❑ Not all block cipher modes are created equal (e.g. Electronic Coloring Book (ECB))

❑ Symmetric Crypto – all parties share the same key

❑ Asymmetric Crypto – only one party has the decryption key (private key)

Attacks on Building Blocks

15

Attacking Hashes
❑ Google.

❑ Seriously... google this 21232f297a57a5a743894a0e4a801fc3 (from before) now

❑ Identifying what type of hash you have in-hand will be useful – the length gives it away

❑ If you don’t know lengths yet, use hash detector tools; e.g. cothan/hashdetector

❑ Hash Crack sites

❑ hashcat tool

❑ (ab)uses your GPU for rapid hash cracking

❑ Rainbow Tables

❑ ’halves’ / parts-of hashes pre-built and ready to go

❑ For things like MD5 these are trivial

❑ For things like SHA-256 these are huge (multi-TB)

❑ You can pick-up pre-generated tables at DEFCON Data Duplication Village. Bring a 6 TiB HDD.

❑ And cooler things like hash-length extension attacks

17

Cooler Attacks on Hashes
❑ Hash-Length Extension Attacks

❑ Take a known H(‘start’) and add to it
to get: H(‘start’ + junk)

❑ Get to a known identical hash for
‘start’ and ‘start’ + junk

❑ Taking Advantage of File Formats

❑ PDF has lots of place to hide
information

❑ See Ange Albertini’s work on PDF
polyglots

❑ This can be leveraged to create
PDFs with the same SHA-1

❑ https://shattered.io/ 😎

https://shattered.io/

18

More on Attacking Hashes

❑ Salts

❑ Because it’s pretty easy to lookup or build a table of known inputs for

hashes; designers tend to follow the best practice of ’salting’ their inputs

❑D033e22ae348aeb5660fc2140aec35850c4da997 = SHA1(‘admin’)

❑3947cdf52a551de4983746545a1affdb2b04f4a2 = SHA1(‘saltadmin’)

❑ Salts are usually pre-prepended onto the input; sometimes with a separator

like ‘.’ or ’+’

❑ hashcat can find a salt for a given hash and input pair.

❑ hashcat can also find inputs for hashes with a given salt as a parameter.

❑Find the salt with one known hash first.

❑OR find the salt with research (some systems’ password salts are well-known)

19

Still More on Attacking Hashes

❑ Password lists

❑ Brute-forcing (all possible character
combinations) for inputs to hashes is
possible

❑ ‘password lists’ are more useful. There are
hundreds of these to choose from, most
from data breaches over the past years.

❑ In CTFs the rockyou list is the most
common – but for applied hash cracking:

YMMV.

❑ This is more generally known as a
dictionary attack

20

Hands On: 10 Minute Challenge

Reverse these hashes:

❑5f4dcc3b5aa765d61d8327deb882cf99

❑5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

❑ecadec2924e86bf88d622ceb0855382d

❑ff4827739b75d73e08490b3380163658

❑6ce3bb6eb450df7d6345151ec00e4a4e

We’ve mentioned the tools you need for this.

Some are easy. One is not (hint: 2 character salt)

Attacking ‘Classic’ Crypto
❑Historically, frequency analysis was the undoing of classic crypto

❑ Letter use in a language (e.g. English) has a predictable #
occurrences (frequency)

❑ Count the number of occurrences of a symbol in ciphertext; match
to expected rate in language

❑ Requires medium-large ciphertext for analysis to work

❑Today (challenges/puzzles/RE):

❑ Try shift ciphers (start with ROT13)

❑ Then try a substitution cipher

❑ Then have ‘fun’ :
https://web.archive.org/web/2021/http://rumkin.com/

https://web.archive.org/web/2021/http:/rumkin.com/

Hands On: 5 min Classic Crypto Attack Example

❑ E->B? E->A ? E->R ?

❑ Try them all: https://web.archive.org/web/2021/http://rumkin.com/

❑ Shift 13 (aka ROT-13):

❑ “Cybertruck 2018 for the win! A huge thank you needs to go out to our
sponsors. This pro-industry event depends on active sponsor involvement and
support.”

Ploregehpx 2018 sbe gur jva!
N uhtr gunax lbh arrqf gb tb bhg gb bhe fcbafbef. Guvf ceb-vaqhfgel
rirag qrcraqf ba npgvir fcbafbe vaibyirzrag naq fhccbeg.

🙈

https://web.archive.org/web/2021/http:/rumkin.com/

23

Stream Cipher Attacks
❑Re-used Key Attack

❑ Recall: it’s all about XOR (⨁) (^)

❑ If I know A^B and I know A or B, I can get the other

❑ Anytime a stream cipher re-uses keys, it’s a problem

❑ if I have E1 = A^K and E2 = B^K I can get A^B

❑ this is a big deal if:

❑A, B are natural language (use running key cipher attacks on A^B) or if

❑A, B are different lengths or if

❑we can control A or B or if

❑we can make any guesses about A or B

24

Hands On: 10 Minute Challenge

Break these stream-ciphertexts

And get the key

❑ad9bc999b790c281

❑b69895ddecce86cc

❑ it’s all about XOR (^)

❑ gchq.github.io/CyberChef/ is great for playing around with
XOR

❑ Key is 32 bits / 4 bytes

❑ I’m lazy (I re-use things)

❑ ‘sentinel’ ^ 0xDEFEA7ED // ‘hf2020!!’ ^ 0xDEFEA7ED

🙉

25

Block Cipher Attacks

❑Getting impractical now…

❑Goals: forgery or key-recovery

❑ Block Cipher Attack Models

❑ known plaintext: attacker is given a set of pairs of cleartext+ciphertext

❑ chosen plaintext: attacker has the ability to query cleartext and receive
ciphertext

❑ chosen ciphertext: attacker has the ability to query ciphertext and receive

cleartext

❑ chosen plaintext/ciphertext: attacker has the ability to query either

❑ related key: attacker has the ability to query with key related to specified
key, K (e.g. K+1 K+2, ...)

26

Padding Oracle Attacks

❑An example chosen ciphertext attack:

❑Padding oracle attack: attacker supplies ciphertext, detects ‘incorrect

padding’ error conditions – can use this oracle to ultimately decrypt

messages

❑Surprisingly common

27

Cryptanalysis and More

❑ Linear Cryptanalysis

❑ solving for linear relationships between
cleartext (input) and ciphertext
(outputs)

❑ at fractional likelihoods

❑ using the likelihoods to sometimes
predict ciphertext from cleartext

❑ 'correct' crypto is designed to resist
these attacks

❑ Differential Cryptanalysis

❑ solving for sensitivity relationships of
changes to cleartext bits (input) onto
ciphertext bits (outputs)

❑ at fractional likelihoods

❑ then use any high likelihoods to guide
attacks with chosen inputs

❑ Modern ‘correct’ crypto is design to
resist these attacks too

❑ Other Cool Stuff: Slide Attack, XSL Attack,
Impossible Differential, Boomerang, ...

28

Reality Check
❑ We talked about attack models & attack goals; some families of attacks

❑ No simple attacks after ‘Classic’ crypto

❑ Few practical attacks

❑ Attacking Crypto these ways is hard, for ’correct’ crypto:

❑ e.g. SHA-256, AES-128, RSA-2048, ECC w/ curve 25519

❑ For incorrect crypto (e.g. anything else)

❑ Is it XOR ‘Crypto’? ➡ Try XOR ciphertexts together; try XORing it with good guesses too

❑ OR Are there repetitions of data patterns in the ciphertext? Maybe it is ECB mode or maybe it is key-reuse in a

stream cipher

❑ OR If you know the name of the crypto, use google – maybe you will find tool or PoC to break it

❑ But it’s not impossible

❑ People build protocols out of these building blocks – protocols get broken more often

❑ (and don’t forget side-channel attacks and software exploitation)

29

Hands-On: 10 Minute Challenge

Decipher the following strings:

Lqydolg#Sdvvzrug$ Sdvvzrug#RN$$$#=,

Hints:

❑ from the IOLI crackme challenges:

pof.eslack.org/tmp/IOLI-crackme.tar.gz

❑ ‘Sdvvzrug’ shows up in both strings, this tells you something

❑ ‘#’ is 0x35 and ‘$’ is 0x36

❑ ‘ ’ is 0x32 and ‘!’ is 0x33

❑ https://web.archive.org/web/2021/http://rumkin.com/

Done? Already? Do a ‘beginner’ challenge at potatopla.net/crypto/

🙊

https://web.archive.org/web/2021/http:/rumkin.com/

Other Attacks on Block Ciphers

❑ Recognizing ciphertext blocks can let you
decrypt them:

maybe not to their contents, but to their meaning

 (Sometimes also their contents; e.g. infer all-zeroes
input)

❑ Use viz tools: vix, radare2, binvis.io, Veles, hobbits

https://github.com/pakesson/diy-ecb-penguin

=AES_ECB()

http://binvis.io/#/

31

Other Attacking Building Blocks
❑ Software Exploitation can yield both control of the software and also

information leaks

❑ Access to process memory can be fruitful key extraction attacks

❑ Multiple tools are available to scour memory for keys:

 e.g. aeskeyfind, radare2, volatility

❑ Reverse engineering of the program code in memory can yield pointers to
the memory locations of keys

❑ Don’t underestimate the downplayed Infoleak vulnerabilities

❑ c.f. Heartbleed

32

Aside: Entropy Visualization

 Entropy (in the sense of C. Shannon) is a metric of information-density in

message/value/bit-sequence

 It turns out (thanks also to Shannon) that information is maximized when the

likelihood of 1/0 are equal

 i.e. ‘completely random’ IS highest entropy.

 The entropy of a bitsequence can be estimated

 Estimated entropy approaches 1.0 for random number sequences

 Next-closest to 1.0 is ‘correct’ crypto

 Then compressed data

 Estimated entropy is not high for other data (structured data)

33

Aside: Entropy Visualization (cont’d)

❑The entropy estimates can be broken-up over a large input and

visualized

❑You can identify and distinguish between

❑ encrypted (correct) content

❑ Other encrypted (incorrect) content

❑ Compressed content

❑Rules of thumb:

❑ Compression looks like pretty high entropy

❑ Encryption looks like really high entropy

34

Aside: Entropy Visualization (cont’d)

AES ECB AES CBC

Image

binvis.io

entropy

binwalk

Attacks on Building Blocks Section Summary

❑ Hash Attacks – collisions, pre-image etc. use google. All other practical (for us mortals)
attacks are in hashcat, use it.

❑ Classic Crypto Attacks – frequency analysis. Try simple things first, use cryptogram tools,
ID the cipher and try cipher-specific attacks

❑ Stream Cipher Attack – Reused Key Attack. i.e. try XOR (^) things together, make
guesses

❑ Block Cipher Attack Models – probably impractical but use the right search terms

 Except ECB: recognize patterns

❑ Don’t forget about software exploitation; in-memory attacks.

❑ Breaking protocols is more fruitful (next sections)

❑ Remember these tools:

 https://web.archive.org/web/2021/http://rumkin.com/

 CyberChef: https://gchq.github.io/CyberChef/

 Visualization tools: binwalk -E, radare2, binvis.io, Veles, hobbits

https://web.archive.org/web/2021/http:/rumkin.com/
https://gchq.github.io/CyberChef/
http://binvis.io/#/

Protocols

36

Protocols

❑ Protocols – the rules that govern the communication between parties

❑ What information is transmitted from party A to party B?

❑ What steps must party B perform?

❑ What information must be sent in reply (if any)?

❑ etc.

A B

38

Protocol: Simple Authentication
❑ Simple Authentication:

❑ Source: wants to be authenticated by the target

❑ Target: decides if source is authentic

❑ The source sends:

 its ID (T) plus an encrypted concatenation of T and a nonce (N) , with a key
(KT) that could be specific to the ID and also is known to the target.

❑ The target:

❑ looks-up encryption key KT from given ID T;

❑ decrypts the {…}KT and checks the nonce N hasn’t been seen before.

► Nonce : Number used ONCE

(e.g. older keyfobs / garage door openers – source is the fob, target is the car or garage door.)

source target

T|{T|N}KT

Protocol: Message Authentication Codes (MAC)
 Message Authentication Codes: for a message, create a value that can enable the message to be

verified by any party with the shared key (the same shared key that is used to create the value). e.g.:

 CBC-MAC – build a MAC with CBC chaining mode of a block cipher

 CMAC – also uses a block cipher

 HMAC – build a MAC with a hash function

 CBC-MAC-AES128, HMAC-SHA1, etc.

 Parties receiving messages that don’t verify against the key (shared in this case) shall discard messages

 How the shared keys are distributed and how messages are discarded is additional protocol details
(for the next layer of the protocol specification)

➢ aka Message Integrity Code (MIC)

➢ aka protected checksums

➢ Not a MAC: a message digest: f(M) where f is a hash function.

source target

M|’MAC’

Protocol: Digital Signatures
 Digital Signatures: using asymmetric crypto, for a message: create a value that can enable the message to

be verified by any party with the public key but cannot be created by any party without the private key.

 a signing party with a private key can create a signature

 parties with the public key can verify that signature

 e.g. DSA, ECDSA. Let’s consider a simple, older RSA signing:

 Send message, M, and signature together

 To verify: Decrypt {H(M)}k and assert it is equal to H(M), where H is a cryptographic hash and k is the RSA
private key

 In both MAC and Signatures, parties receiving messages that don’t verify against the key (public in this case)
shall discard messages

 How the public keys are distributed and how messages are discarded is additional protocol details (for
the next layer of the protocol specification)

 e.g. what if they sent: K|M|{H(M)}k where K is the public key?

source target

M|{H(M)}k

41

Protocol: Challenge-Response (C-R)
 Source wants to be authenticated by the target

 Source receives a nonce as challenge

 Transforms it and replies as response

 An ideal C-R would make it impractical for an attacker to guess the secret by observing
traffic of multiple C-R exchanges.

 If attacker sees both challenge and response ➡ known plaintext attack

source target

=

Ready

Challenge: N

Response: f(N)

PASS / FAIL

f(・)f(・)

rand()

Crypto Crypto

Protocols

Section Summary

 Protocols – the rules that govern the communications between parties

 Digital Signatures – can be created by parties with the private key but verified by

anyone with the public key (built from asymmetric crypto)

 Message Authentication Codes (MAC) – can be created and verified by any party with

the key (can be built from symmetric crypto)

 Nonce “number used once” – can be random or a counter …

 Simple Authentication – source send its ID and an encrypted ID+nonce pair to a target

for verification

 Challenge Response – target sends nonce to source; source replies with some proof
that it has an ID known to the target

 e.g. nonce encrypted with key known to source

 e.g. nonce transformed with parameters known to source

Attacks on Protocols

43

Attacks on Protocols

Generally: try to break the assumptions of the protocol

This actually generalizes to “How to attack any specification”:

 Anywhere the specification says SHALL/SHOULD – see what
happens when it DON’T…

Attacks on Simple Authentication

 Simple Authentication assumes nonce N hasn’t been seen before

 If the nonce is random:

 Does it actually check? ➡ Send again (Replay Attack)

 How many nonces does it store? ➡ Send +1 (Valet Attack)

 If the nonce is a counter:

 How does it resynchronize? ➡ Try sending counter guesses (Bad counter resync
attack)

 Simple Authentication assumes that the key KT is associated with the ID T and

 Are there other T that could associate with KT? ➡ Try sending to other target (Key
collision attack)

46

Attacks on MAC
 For digests

 Recall: these aren’t actually MACs – but they get used that way occasionally

 Recall: you will know the input, i.e. you will have at least one digest+message pair

 You need to identify digest algorithm – length usually gives it away; also see tools
like cothan/hashdetector

 You may need to identify the salt also – hashcat can do this

 For HMAC- MD5, SHA1, …:

 hashcat can crack the key or salt given a hmac+message pair

 Software exploitation, ‘confused deputy’

 Software exploitation could enable control of what messages are sent by a piece of
SW designed to send mac+message pairs.

 Yields a successful forgery attack unless other software-integrity measures are taken.

47

Attack on Digital Signatures
 Recall the RSA Signature example: Send message, M, and signature together

M|{H(M)}k

 Agreeing on the K public key for the k private key is a critical part.

 What if the protocol includes the public key K?

K|M|{H(M)}k

 Then an attack is to use your own private/public key pair a/A and send:

A|M|{H(M)}a

 Watch out for this broken protocol (sending the pubkey). It happens sometimes…

 More generally: try to find ways to substitute the expected public key K for your key, A

 Stored in flash somewhere?

48

Attack on Challenge-Response:
Middleperson Attack (in General)

 Interposing an actor in-between the source and target
➢ aka MiTM

 Enables tampering with the contents, ordering, timing etc.

 Good concept for attacks on specific Challenge-Response protocols

 Definitely applicable in TLS/SSL attacks when you can interpose

 Can even be effectively achieved without physical interposition if messages can be
selectively denied (e.g. CANT or CANHack attacks)

source target

=

f(・)f(・)

rand()

Attacks on Protocols

Section Summary

 Attacks on protocols are more fruitful than attacks on building blocks

 Simple Authentication Attacks

 Key Collisions – e.g. 16bit serial number used as input to key

 Key Extraction and Extension – e.g. Keeloq

 Replay Attack – capture one or more, replay selectively

 Valet Attack – capture a large set during temporary but extended possession

 Bad Counter Resynchronization – depends on resync behavior of protocol

 MAC

 Digests (broken), Hash breaking HMACs, shared-key reuse for MACs

 Digital Signature Attacks

 Public key substitution

 Challenge-Response Attacks

 Middleperson Attack

 (and more coming up in later section)

Protocol: WPA2

WPA2

 Wi-Fi Protected Access 2

 Wi-Fi confidentiality measure

 Supersedes WEP (which was a very broken protocol)

 WPA2-Personal (-PSK)

 uses a pre-shared key.

 Each client (supplicant in WPA-speak) gets its own session key

 Setup of the key is visible at different levels.

 WPA2-Enterprise

 Enables authentication of the Access-point

 All communication with the Access-point is done with individualized keys

 Let’s discuss WPA2-Personal

WPA2 Handshake

4-way handshake

 A nonce

 Then another nonce with MAC

 Then a global key with MAC

 Then an ACK

Grossly over-simplified

Supplicant
(client)

Access
point

Key (& MAC)

Ack

Client starts

using (installs)

session key

here.

Nonce (& MAC)

Nonce

53

Attacks on WPA2

There is a MAC, implemented as a HMAC which is sent by supplicants and derived from

the pre-shared key

 Hash attacks to reverse this

 There are advantages to having observed multiple nonce & MAC -- so the

attack starts with causing the target to deauthorize from the Wi-Fi (repeatedly)

 hashcat can do the cracking, but not the de-auth

 airocrack-ng can do both

54

Attacks on WPA2 (cont’d)

 There is a key reuse vulnerability in some client
software, dubbed KRACK

 When the key is ‘installed’, the client resets its
communication counters

 By replaying message 3 in the handshake,
counters can be reset repeatedly – key reuse
attack

 Some systems were even vulnerable to
installing a null-key by sending a tampered 3rd

message

 Fun-fact: WPA2 had been formally-proven secure.

 The spec of the formal proof did not include
”keys must be ‘installed’ once and only once”

Ack

Nonce (& MAC)

Nonce

0x00…00(& MAC)

Ack

Nonce (& MAC)

Nonce

Key (& MAC)

Key (& MAC)

https://www.krackattacks.com/

https://www.krackattacks.com/

55

Hands-On: 1 Minute Challenge

Capture as many users of the Cybertruck Wi-Fi as you can in 1 minute.

I’m kidding – please don’t attack the Wi-Fi. I’m

using it.

❑ KRACK is unnecessary – your systems all know the WPA2 password

already (it is a pre-shared key)

❑ How this would work :

❑ ’de-auth’ other clients so you could witness their handshake with

the Access Point.

❑ At which point you would have their session key and could

decrypt all their traffic.

56

Protocol: WPA2

Section Summary

WPA2 Passwords can be cracked, indirectly, via the hashes exposed in the

handshake

 The process is accelerated by capturing multiple 4-way handshakes, so

the attack usually also includes a flood of de-authenticating the clients

WPA2 keys can be reinstalled (KRACK)

 Re-installing a key resets counters – this gives a key reuse attack

 Sometimes WPA2 keys can be nulled (KRACK)

 Then follow up with known-key attack (v. simple in this case)

 These attacks on Wi-Fi require clients are connected

Protocol:

TLS / SSL

57

Protocol: TLS / SSL
 Transport Layer Security (TLS). Was SSL, now that name is deprecated

 Used in HTTPS – but can be found without HTTP

 Provides both confidentiality and authentication of endpoints

 typically client authenticates server

 Sometimes server also authenticates client -- we’re not going cover this

?

…

…
connect

certificate

59

Certificates?

Chains of Digital Signatures (asymmetric crypto)

 Recall: only the owner of the private part of a public key-pair can:

 decrypt traffic encrypted to the public key

 create a signature verifiable by anyone with the public key

By Yanpas - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=46369922

60

How Clients Are Supposed to Authenticate Servers

in?

Trust Store

By Yanpas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46369922

61

Client Implementations of Server Authentication

NB: The proxies will work out-of-the-box on Type 1 and Type 2

“Type” Trust

Type 1 Trust anything (no SSL/TLS)

Type 2 Trust any valid certificate

Type 3 Trust any root-CA in OS Trust Store

Type 4 Trust only (pin) the pub key of certificate

Type 5 Trust only (pin) the pub key of cert. signer

Type 6 Pinning and Integrity Verification0xc0de

62

Middleperson (aka MiTM) Attacks

• HTTP Proxies: mitmproxy, Burp, ZAP, martian

• Non-HTTP: MiTMF, ettercap, bettercap, SSLSplit

• Some require that you setup the proxy as a gateway -- some can work as a

sibling (leveraging ARP poisoning)

63

Certificate Substitution Attacks (on Type 2)
 Proxy creates two TLS connections

 Upstream, client connection to server – normal, valid, nothing to see here

 Downstream, served to client – supplies some other certificate

 Type 2 client sees ‘a cert’ and is happy

?

…

…
connect

certificate

…

…
connect

‘certificate’

Trust Store Attacks (on Type 3)

Can you add a root certificate authority to the trust store?

 If you have UI access to an Android device the answer is probably yes

Can you use a compromised root certificate that is already in the trust store?

 There have been several compromised root certificates over the years

(Komodo, Symantec)

 If the devices is old enough, the compromised root certificate might be in

its trust store

 Forge a server certificate signed with the secret from the compromise root;
install that in the proxy (e.g. mitmproxy, Burp, etc.)

Getting the compromised secret is… the tricky part

65

Types 4-5 Attacks
 Recall: types 4-5 use certificate pining – they will only accept a connection from a

server with a particular expected public key

 If a different public key is supplied they abort connections

 Software Exploitation is the only remote attack

 If you have superuser privileges on the systems executing the type 4-5 app then
there are simple ways to replace the expected pub key or bypass the abort
connection response:

 Patch the pubkey from the software

 Runtime hooking: e.g. Universal Android SSL Pinning Bypass with Frida
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-
with-frida/

 The runtime integrity checks will prevent most patches, hooks and exploits.

Types 6 Attacks

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/

66

Other Attacks (on all types)

 SWEET32 – monitor long-lived Triple-DES and recover cookies

 DROWN – break confidentiality of some TLS (downgrade)

 Logjam – break confidentiality and integrity of some TLS (downgrade)

 POODLE – break confidentiality and integrity of some TLS (downgrade)

 Not very practical – only PoCs available : poodle-PoC , Tim---/drown , drownAttackDemo

 There are even passive differential cryptanalysis attacks – working only at large-scale and long
time periods

 Recover a RSA private key from a TLS Session with Perfect Forward Secrecy – Marco Ortisi

 Other ‘other attacks’ (not confidentiality or integrity compromising):

 Heartbleed – exploit memory leak in some OpenSSL versions to view 64K of server memory
(in theory could yield a server secret)

Protocol: TLS / SSL

Section Summary
 TLS (SSL is deprecated) sets up a channel with confidentiality and authentication

 Confidentiality is established with key-exchange

 Authentication is established with certificate chain verification – the chain ultimately ending in
an authority in a trust store of the endpoint

 TLS/SSL middleperson attacks require a network interposition and include:

 Abuse of endpoints not checking certificate chains

 Abuse of trust-stores – adding new authorities into them, or convincing users to do it

 (rare) crypto breaks to obtain session or master keys

 (less rare) forced downgrade to TLS/SSL version with publicly broken crypto

 Other TLS/SSL Attacks (some are aforementioned rare crypto breaks):

 SWEET32, DROWN, logjam, POODLE, Heartbleed

 Tools:

 mitmproxy, Burp, ZAP, MITMf

 poodle-PoC , Tim---/drown , drownAttackDemo

Protocol: UDS Seed-Key Exchange

68

69

UDS
 Unified Diagnostic Services – ISO 14229 ; on CAN: ISO 15765

 Used for nearly ALL vehicle Diagnostic Protocols

 You will learn a lot about it in other sessions today and tomorrow

 There are actions in UDS that are protected. To execute the action requires

authorization: e.g.

 Read memory

 Reflash ECUs

 Perform potentially dangerous maintenance operations

➢ aka ‘the fun stuff’

70

UDS Authorization

 Sometimes UDS is helpful; it will tell you that you need to authorize

 Negative Response Code : SecurityAccessDenied

 You’ll learn about these

 To authorize; unlock the current session with SecurityAccess Seed-Key Exchange

 ‘Session holder’ (server) emits a ‘seed’; ‘session user’ (client) returns a ‘key’

 Service 0x27 (replies on 0x67)

 Subfunction 0x05 for requestSeed / 0x06 for sendKey

 You’ll know more about these soon

71

Seed-Key Exchange
Seed-key exchange is a Challenge-Response Protocol

Only 16-bit space; so it might not fit our ideal characteristics of resisting known plaintext

forgery attacks

The ‘seed’ here is a challenge and the ‘key’ here is a response

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

72NB: J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

Daily J., COMVEC15, A Digital Forensics Perspective …

Diag-
nostic

SW
ECU

=

-- -- 02 27 05

-- -- 04 67 05 5E ED

-- -- 04 27 06 FF FF

-- -- 07 27 06 FF FF FF FF FF

f(・)f(・)

rand()

CAN

73

5 Minute Hands-On:

Derive the Seed-Key Routines
1 2 3

18DAF100#0467055b31
18DA00F1#0427065c31
18DAF100#0467053632
18DA00F1#0427063732
18DAF100#0467052c31
18DA00F1#0427062d31
18DAF100#0467053839
18DA00F1#0427063939

18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435
18DAF100#0467050100
18DA00F1#0427063435

18DAF100#0467052c31
18DA00F1#0427060005
18DAF100#0467053132
18DA00F1#0427061d06
18DAF100#0467053732
18DA00F1#0427061b06
18DAF100#0467053137
18DA00F1#0427061d03

74

‘Crypto’

75

Protocol: Seed-Key Exchange

Section Summary (see UNABRIDGED for missing STUFF)

 J1939 IDs 0x18DA00F1 and 0x18DAF100 are used for UDS over J1939

 SecurityAccess service is 0x27 / sub requestSeed: 0x05 sendKey: 0x06

 If you have diagnostic software:

 Reverse the key algorithm & parameters from PC software

 Black-box / Lift the key algorithm & parameters

 If you have ECU firmware:

 Reverse the key algorithm & parameters from firmware image (NB: you might have the wrong direction of algorithm)

 If you have some captures of successful SecurityAccess:

 Solve for unknowns in a known formula from related ECUs

 Retry seeds until a match occurs with one in the captures

 If you have only the ECU:

 Brute-force (can you control the seed?)

 Get some captures (e.g. service center) – see above

 Glitch past the check – be amazing

Closing

76

Summary

 ’Modern’ crypto is about numbers / Classic ‘crypto’ is about alphabets

 ’Crypto is hard’ → means correct crypto is hard to break, if you have only the capture

of communications

 Crypto building blocks don’t get broken very often (given only the capture of comms)

 Crypto protocols get broken

 Crypto gets broken via side-channels

 Crypto gets broken by compromise of execution environment

 You can middleperson-attack TLS/SSL

 You can lift/reverse/solve/brute-force Seed-Key Exchange

78

Resources for Continued Learning

• Cryptopals (CTF), T. Ptacek et. al.

• Let’s Play with Crypto (Pres.), Ange Albertini

• Any and all SO answers by Thomas Pornin

• Security Engineering (Book), Ross Anderson

• PotatoSec Crypto Puzzle Challenges

• POC||GTFO (Journal), mirror

http://cryptopals.com/
https://speakerdeck.com/ange/lets-play-with-crypto-v2
https://stackoverflow.com/users/254279/thomas-pornin?tab=answers
https://www.cl.cam.ac.uk/~rja14/book.html
https://www.potatopla.net/crypto/
https://www.alchemistowl.org/pocorgtfo/

	two and a half hours !! ed
	Slide 1: Cryptography Session: ”How Crypto Gets Broken (by YOU)” 0x74776f616e646168616c66686f7572732121th Ed.
	Slide 2: About Me
	Slide 3: Thanks to:
	Slide 4: Agenda
	Slide 5: ‘Crypto’
	Slide 6: Crypto Building Blocks
	Slide 7: Encryption
	Slide 8: Hands-On: 10 Minute Challenge
	Slide 9: Hashes
	Slide 10: ‘Classic’ vs Modern Crypto
	Slide 11: Stream Ciphers
	Slide 12: Block Ciphers
	Slide 13: Symmetric / Asymmetric Crypto
	Slide 14: Crypto Building Blocks Section Summary
	Slide 15: Attacks on Building Blocks
	Slide 16: Attacking Hashes
	Slide 17: Cooler Attacks on Hashes
	Slide 18: More on Attacking Hashes
	Slide 19: Still More on Attacking Hashes
	Slide 20: Hands On: 10 Minute Challenge
	Slide 21: Attacking ‘Classic’ Crypto
	Slide 22: Hands On: 5 min Classic Crypto Attack Example
	Slide 23: Stream Cipher Attacks
	Slide 24: Hands On: 10 Minute Challenge
	Slide 25: Block Cipher Attacks
	Slide 26: Padding Oracle Attacks
	Slide 27: Cryptanalysis and More
	Slide 28: Reality Check
	Slide 29: Hands-On: 10 Minute Challenge
	Slide 30: Other Attacks on Block Ciphers
	Slide 31: Other Attacking Building Blocks
	Slide 32: Aside: Entropy Visualization
	Slide 33: Aside: Entropy Visualization (cont’d)
	Slide 34: Aside: Entropy Visualization (cont’d)
	Slide 35: Attacks on Building Blocks Section Summary
	Slide 36: Protocols
	Slide 37: Protocols
	Slide 38: Protocol: Simple Authentication
	Slide 39: Protocol: Message Authentication Codes (MAC)
	Slide 40: Protocol: Digital Signatures
	Slide 41: Protocol: Challenge-Response (C-R)
	Slide 42: Protocols Section Summary
	Slide 43: Attacks on Protocols
	Slide 44: Attacks on Protocols
	Slide 45: Attacks on Simple Authentication
	Slide 46: Attacks on MAC
	Slide 47: Attack on Digital Signatures
	Slide 48: Attack on Challenge-Response: Middleperson Attack (in General)
	Slide 49: Attacks on Protocols Section Summary
	Slide 50: Protocol: WPA2
	Slide 51: WPA2
	Slide 52: WPA2 Handshake
	Slide 53: Attacks on WPA2
	Slide 54: Attacks on WPA2 (cont’d)
	Slide 55: Hands-On: 1 Minute Challenge
	Slide 56: Protocol: WPA2 Section Summary
	Slide 57: Protocol: TLS / SSL
	Slide 58: Protocol: TLS / SSL
	Slide 59: Certificates?
	Slide 60: How Clients Are Supposed to Authenticate Servers
	Slide 61: Client Implementations of Server Authentication
	Slide 62: Middleperson (aka MiTM) Attacks
	Slide 63: Certificate Substitution Attacks (on Type 2)
	Slide 64: Trust Store Attacks (on Type 3)
	Slide 65: Types 4-5 Attacks
	Slide 66: Other Attacks (on all types)
	Slide 67: Protocol: TLS / SSL Section Summary
	Slide 68: Protocol: UDS Seed-Key Exchange
	Slide 69: UDS
	Slide 70: UDS Authorization
	Slide 71: Seed-Key Exchange
	Slide 72
	Slide 73: 5 Minute Hands-On: Derive the Seed-Key Routines
	Slide 74
	Slide 75: Protocol: Seed-Key Exchange Section Summary (see UNABRIDGED for missing STUFF)
	Slide 76: Closing
	Slide 77: Summary
	Slide 78: Resources for Continued Learning

