
Introduction
to SAE J1939

A primer for in-vehicle
networking

PREPARED BY DR. JEREMY DAILY

1Volvo SuperTruck 2018

Jeremy S. Daily, Ph.D., P.E.
 U.S. Air Force (1995-2002)

 Electronic Maintenance of Meteorological and Navigation Systems
 Wright-Patterson Air Force Base, Dayton, OH

 Ph.D. in Engineering from Wright State University (2006)
 Associate Professor of Mechanical Engineering

University of Tulsa (2006)
 Founder of Synercon Technologies, LLC (2013)

 Commercialized digital forensic technology developed at U. Tulsa.
 Sold Synercon to the Dearborn Group in 2018.

 Co-Founded the CyberTruck Challenge (2017)
 Treasurer for the CyberAuto Challenge (2021)
 Co-Founded the CyberBoat Challenge (2022)
 Instructor for the CyberTractor Challenge (2022)
 Research Performer for NSF, DARPA, DOJ, and NMFTA
 Associate Professor of Systems Engineering at Colorado State University (2019)

11 July 2022 CyberTractor Challenge 2

Agenda
• Vehicle Systems and

Communications

• Networking and Wiring Diagrams

• Connecting to the Network

• Interpreting Data with J1939

• J1939 Transport Protocol

• J1939 Address Claims

• Diagnostics
• SAE J1939-73
• ISO14229 - UDS
• Proprietary protocols

• Cybersecurity Challenges

3

Training Goals
Understand the need for in-vehicle communication
using CAN and SAE J1939

Connecting to J1939 Networks

Interpret J1939 network traffic using the SAE
Standard

Recognize SAE J1939 Transport Protocols for larger
messages

Introduction to J1939 Address Claiming

Demonstration of RP1210 functionality for diagnostics

Realize J1939 is inherently an open (and potentially
insecure) read-write bus

4

Truck Systems
Primary Functions
◦ Go – Convert fuel into mechanical energy to accelerate heavy loads
◦ Stop – Brake the tractor-trailer systems, often with anti-locking air brakes
◦ Steer – Give the driver the ability to guide the vehicle
◦ Haul – Support heavy loads and pull trailers

Additional Functions
◦ Protect – Restrain occupants in a crash. Assist drivers to avoid crashes.
◦ House – Provide places to sleep while on a long haul
◦ Entertain – Radio, CDs, Bluetooth, and Satellite options
◦ Monitor – Telematics and fleet management
◦ Diagnose – Provide information related to vehicle operation and potential faulty parts
◦ Comply – US DOT regulation, EPA and emissions regulations

5

Truck Engines
Primary function to efficiently produce
motive power

Also:

• Comply with emission requirements

• Aid diagnostics and troubleshooting

• Record driving and diagnostic events

• Additional Power for
• Compressed Air
• Power take off (PTO) equipment
• Electrical systems

Computer controls are paramount to
realize these functions

6

Engine Control
Module (ECM)

The driver’s side of a Navistar A26 Engine in an International LT truck.

Engine Control Module
(ECM)

7

The ECM is an electronic control
unit (ECU) primarily responsible for
the operation of the engine.

Single ECUs that are engine mounted (Cummins,
PACCAR, Navistar)
Multiple ECUs communicating over a network
(Detroit Diesel, Volvo)

Engine controllers are often the most advanced and expensive
electronic units on a vehicle

Data from an ECM
Live Status Data
◦ Data broadcast to all ECUs regarding

current status and operation
◦ Examples: Engine speed, accelerator pedal

position, wheel-based vehicle speed and
many others

Configuration Data
◦ Does not change with time
◦ Features, Parameters, Calibration Settings

Historical Data
◦ Data that changes with time
◦ Mileage, hours, histogram data for

aftertreatment, et al.

Diagnostics Data
◦ Diagnostic Messages including

Failure Mode Indicators and
Suspect Parameters (or
subsystems)

◦ Freeze Frame Data

Event Data
◦ Recordings from Triggered Events

like Last Stops, Hard Brake,
External Triggers, or Fault Codes

◦ Useful for driver training and
crash reconstruction

8

Electronic Brake
Controllers

1. Sense wheel speeds

2. Determine if wheel lock-up is impending

3. Modulate the air pressure to the brake chambers

4. Tell the engine to stop producing torque

9

store.partshighway.com

https://store.partshighway.com/speed-sensor-heavy-duty-dorman-505-5406.html

In-Vehicle
Networking
HOW DOES THE BRAKE CONTROLLER COMMUNICATE WITH THE
ENGINE CONTROLLER?

10

Controller Area Network
(CAN) in Trucks
IN THE DIAGNOSTIC PORT IN THE WIRING HARNESS

11

Pin C: CAN-High
Pin D: CAN-Low

Yellow: CAN-High
Green: CAN-Low

The CAN bus is typically a twisted-pair of copper wire connecting the ECUs.

Diagnostic Connector
Pinouts – SAE J1939

12

250k - Black Connector
500k - Green Connector
Green goes into Black
Black cannot plug into Green

Pin Signal

A Ground

B Vbatt (+12V)

C J1939 High

D J1939 Low

E Shield

F J1708 A(+)

G J1708 B(-)

H CAN2 High

J CAN2 Low

Vehicle
Port

Tool
Connector

SAE J1708/J1587
A BRIEF INTERLUDE

13

Some History:
J1708 and J1587
First mainstream heavy vehicle diagnostics communication protocol

Based on RS-485 communications at 9600 baud

Message frames are determined by time spacing between bytes (this can be fragile)

8-bit check sum to verify message contents (not strong)

Physical wiring and signaling are defined in J1708

Meaning of the messages are defined in J1587

14

Message Composition:
MID = Message Identifier (like Source Address)
PID = Parameter Identifier (like SPN)
Data = encoded value of PID
Checksum = 1 byte to check message transmission errors

8-bit
sums
ignore
carry

J1708 Message Example
J1708 DATA FRAMES

80 FF B7 00 00 CA
80 54 1B BE C0 11 28 CF 5B 7F 5C 58 FD
80 54 1C BE 08 12 5B 80 5C 59 2B C7 B6
88 31 00 97 3F FF 54 1C A8 18 01 D1 01 FF 70
8C 41 F3 46 00 A8 17 01 3A
80 55 40 79 00 B7 85 01 B8 70 02 F4 04 2E 9A 56 00 F5
80 54 1C BE 3C 12 28 CF 5B 80 5C 59 7D
80 54 1C BE 52 12 5B 83 5C 5B 59
80 55 40 79 00 B7 96 01 B8 53 02 F5 04 2E 9A 56 00 00
80 54 1D BE B0 12 28 CF 5B 85 5C 5C 00
80 54 1D BE EC 12 5B 86 5C 5D 2C F0 9D
80 54 1D BE 0B 13 28 CF 29 C0 5B 89 5C 5F B4

J1708 MEANING

Message Identifiers are at the beginning

The message is considered valid if
the 8-bit sum is zero.
◦ 80+FF+B7+00+00+CA = 300

Popular MIDs
◦ Engine 1: 128 (0x80)
◦ Brakes, Power Unit: 136 (0x88)
◦ Brakes, Trailer #1: 137 (0x89)
◦ Instrument Cluster: 140 (0x8C)
◦ Cab Climate Control: 146 (0x92)
◦ Off-Board Diagnostics Tool: 172 (0xAC)

15

J1587 Message Decoding
Example

16

80 54 1B BE C0 11 28 CF 5B 7F 5C 58 FD
◦ 80 - MID for Engine #1
◦ 54 – PID 84, Road Speed
◦ 1B – Value of Road Speed (27 * 0.5 = 13.5 mph)
◦ BE – PID 190, Engine Speed
◦ C0 11 – Value of Engine Speed (3089 * 0.25 = 772.25 rpm)
◦ 28 – PID 40, Engine Retarder Switches Status
◦ CF – (11001111) Engine Retarder switch Off
◦ 5B – PID 91, Percent Accelerator Pedal Position (APP)
◦ 7F – Value of Percent APP (127*0.4 = 50.8%)
◦ 5C – PID 9C, Percent Engine Load
◦ 58 – Value of Engine Load (88 * 0.5 = 44%)
◦ FD – Checksum (80+54+1B+BE+C0+11+28+CF+5B+7F+5C+58+FD = 0x600)

Packed PIDs
into 1

message

These interpretations are from the SAE J1587 Document: https://www.sae.org/standards/content/j1587_201301/

https://www.sae.org/standards/content/j1587_201301/

Power Line Carrier
SAE J2497
When trailers are connected, similar J1708/J1587 data is transmitted over the trailer power
(+12V) line using frequency spectrum modulation.

17

Trailer
Diagnostic

Tools

J560
Connectors

Electronic Brake
Controller

Why SAE J2497 is important

18

https://www.youtube.com/watch?v=Na8K_fVEzQo

Back to J1939
DIAGNOSTIC CONNECTORS

19

Diagnostic Connector
Pinouts – PACCAR

20

Diagnostics CAN is at 250k.

PACCAR Sells a crossover
cable for diagnostics.

Pin Signal

A Ground

B Vbatt (+12V)

C J1939 High

D J1939 Low

E Shield

F Diag CAN H

G Diag CAN L

H CAN3 High

J CAN3 Low

Vehicle
Port

Tool
Connector

Diagnostic Connector
Pinouts – Mack/Volvo

21

Source: DG Technologies Product Pinouts and Industry Connectors Reference Guide
https://dgtech.com/wp-content/uploads/2016/04/Pinouts_ICR.pdf

8 7 6 5 4 3 2 1

16 15 14 13 12 11 10 9

1

8

9

16

Pin Signal

3 J1939 High

5 Ground

6 ISO 15765 L

11 J1939 Low

12 J1708 A(+)

13 J1708 B(-)

14 ISO 15765 L

16 VBatt

https://dgtech.com/wp-content/uploads/2016/04/Pinouts_ICR.pdf

RP1226 Accessory
Connector Pinouts

22

Source: ATA TMC RP1226
https://www.atabusinesssolutions.com/Shopping/Product/viewproduct/2675472/undefined

Pin Signal Pin Signal

1 Switched Battery 8 Ground

2 CAN 1 High 9 CAN 1 Low

3 Reserved (not used) 10 Reserved (not used)

4 CAN 2 High 11 CAN 2 Low

5 OEM Reserved 12 OEM Reserved

6 J1708 A(+) 13 J1708 B(-)

7 Ignition (PLC) 14 Battery (always on)

https://www.atabusinesssolutions.com/Shopping/Product/viewproduct/2675472/undefined

Diagnostic Connector
Pinouts – Key Point

23

Use the wiring diagrams to verify the actual pinouts of the diagnostic connector.

In Class Exercise:
Reading Schematics

24

Identify the pin numbers for the J1939
Service Tool Connector for the Cummins
CM2350.

1. What pin is J1939 Positive on the
CM2350?

2. What pin is J1939 Negative on the
CM2350?

3. What pin is J1939 Positive on the
Service Tool Connector?

4. What pin is J1939 Negative on the
Service Tool Connector?

5. How many CAN channels are on the
CM2350?

SOLUTIONS

In Class Exercise:
Reading Schematics

Identify the pin numbers for the J1939
Service Tool Connector for the Cummins
CM2350.

1. What pin is J1939 Positive on the
CM2350? 22

2. What pin is J1939 Negative on the
CM2350? 46

3. What pin is J1939 Positive on the
Service Tool Connector? C

4. What pin is J1939 Negative on the
Service Tool Connector? D

5. How many CAN channels are on the
CM2350? 3 on the Schematic, 4 on
the harness.

25

Notes:

1. There are terminating resistors on
each CAN/J1939 Channel.

2. The Vehicle OEM connector is
brown on the CM2350,

3. The Engine connector is gray.

4. The engine connector has a
J1939 channel for smart devices
◦ Variable Geometry Turbo
◦ Aftertreatment NOX sensor
◦ Selective Catalytic Reduction (SCR)

temperature sensors

CAN Terminating
Resistor

CAN Terminating
Resistors

Bill of Materials to Build a
J1939 Diagnostic Connector

Qty. Manufacturer Part Number Supplier Supplier Part Num Description

1 Amphenol Sine Systems AHD16-9-1939S8R Digi-Key 889-2245-ND Green Plug Housing

4 Amphenol Sine Systems AT62-201-16141 Digi-Key 889-1469-ND Nickle Socket Contact

Allied Wire and Cable

GXL-18 YELLOW J1939 H Wire

GXL-18 GREEN J1939 L Wire

GXL-18 RED VBatt Wire

GXL-18 BLACK Ground Wire

26

Detailed Deutsch Connector Systems are described in the TE catalog:
https://www.te.com/ict-catalog#page=1

https://www.te.com/ict-catalog#page=1

After Class
Exercise
Design a J1939 breakout box with
the following features:

1. Split the signals coming in to
two signals going out

2. Connect test points to each
signal

27

If you don’t have time to build one yourself, they are commercially available.
For example: https://www.dgtech.com/product/j1939-breakout-box/

https://www.dgtech.com/product/j1939-breakout-box/

Connecting to the
CAN Bus
BOOT YOUR COMPUTERS TO UBUNTU LINUX

28

Controller Area Network
Low latency with up to 8 bytes of data per
frame (Classic CAN)

Bit rates up to 1mbit/second

Required on all passenger cars for emission
compliance starting in 2008 (Standard 11-bit
CAN ID)

Utilized by SAE J1939 as the foundational
networking protocol in the 1990s

29

Introduced by Bosch in the 1980s

Multi-master priority-based bus access with
non-destructive message arbitration

Utilizes a 15-bit cyclic redundancy check (CRC)
to reliably detect transmission errors

Reliable delivery is built in with an
acknowledgement bit at the end of the frame

S
O
F

11-bit CAN ID
S
R
R

I
D
E

18-bit CAN ID
R
T
R

Control
Field Data Bytes CRC

A
C
K

E
O
F

Extended 29-bit CAN Frame

CAN Signaling:
Measurement Example

30

◦ PACCAR MX Engine Control Module (ECM)
◦ Synercon Technologies Smart Sensor Simulator

◦ Completes the CAN network circuit
◦ Provides connectivity for the ECM

◦ DG Technologies J1939 Breakout Box
◦ Raspberry Pi with a CAN-FD Hat

◦ Runs embedded Linux with SocketCAN
◦ Records CAN traffic using can-utils candump command

◦ Fluke Scope Meter as an Oscilloscope
◦ Measures voltage traces between CAN High and CAN Low

◦ Saleae Logic Probe
◦ Analog Voltage measurements (duplicating the oscilloscope)
◦ Digital measurements from the CAN Transceiver
◦ CAN signal decoding features
◦ PC application interface

What is on the wire?
Let’s monitor the
yellow CAN-H and
green CAN-L lines.

CAN Signaling:
Single Frame

31

CAN High

CAN Low

Each line is
at 2.4V for a

quiet bus.

Digital logic from
Transceiver RX

Transceiver TX

CAN Measurements
Observations
A bit time is about 4 microseconds. This is
1/250000.

Data that has all zeros still has extra bits in the
field. These are called stuff bits.

Stuff bits are inserted after 5 sequential bits of
the same value.

At the end of the message, A bit is seen on the
TX line, which indicates an acknowledgement
the message was received.

The total message length is about 500us.

Signaling is non-return-to-zero (NRZ).

32

Acknowledgement Bit

After Class
Exercise
Determine the J1939 priority, parameter
group number, destination address, and
source address based on the trace of a
CAN message.

There are 2 signals available:

1. Analog with 50MHz sampling

2. Digital with a time history of
transitions.

Hints:

• There are stuff bits that need to be
removed

• The CAN bus speed is 250k
bits/second

33

Download the traces from
https://www.engr.colostate.edu/~jdaily/cyber/challenge_data.html

https://www.engr.colostate.edu/%7Ejdaily/cyber/challenge_data.html

Collecting CAN
Data
LET’S GET SOME DATA FROM A REAL ELECTRONIC CONTROL UNIT

34

CAN Enabled
Embedded
Linux Hardware

120 Ω

120 Ω

Brake Controller Engine Control Module

BeagleBone
Black

Other
ECUs

Diagnostics Port

Linux Computer (e.g. Raspberry Pi)

CAN Controller

CAN Transceiver

35

BeagleBone Black with
Heavy Truck Cape

https://github.com/SystemsCyber/TruckCapeProjects/tree/master/hardware

https://oshpark.com/shared_projects/FXh7K628

36

https://github.com/SystemsCyber/TruckCapeProjects/tree/master/hardware
https://oshpark.com/shared_projects/FXh7K628

Raspberry Pi with CAN
Hat

https://www.amazon.com/RS485-CAN-HAT-Long-Distance-Communication/dp/B07VMB1ZKH/

https://www.amazon.com/Raspberry-Pi-MS-004-00000024-Model-Board/dp/B01LPLPBS8/

37

https://www.amazon.com/RS485-CAN-HAT-Long-Distance-Communication/dp/B07VMB1ZKH/
https://www.amazon.com/Raspberry-Pi-MS-004-00000024-Model-Board/dp/B01LPLPBS8/

CAN Adapters
for Linux

120 Ω

120 Ω

Brake Controller Engine Control Module

Other
ECUs

Diagnostics Port

CAN Adapters

38

Exercise: Connect the
CAN Adapters for Linux

39

Exercise: Connect with
SocketCAN on Linux

Plug in the adapter (Peak or USB2CAN)

In Ubuntu Linux, Open a Terminal and run these commands:
◦ lsmod | grep can

◦ Confirm the CAN kernel modules are installed

◦ sudo ip link set can0 up type can bitrate 250000
◦ Password is `student`

◦ ip –details –statistics show can0
◦ candump any

◦ Ctrl-c to stop

◦ sudo ip link set can0 down

41

Make sure the keyswitch is
on, cables are plugged in,

and power is on.

Connecting to a Truck
and Reading Data
Check the bitrate of the physical channel:
◦ ip -details -statistics link show can0

Change bitrate to match system:
◦ sudo ip link set cano down

◦ sudo ip link set can0 up type can bitrate 250000

Log the CAN data to a file:
◦ candump -l –e any

42

Exercise:
SavvyCAN (Ubuntu)

45

Right Click

Exercise:
SavvyCAN (Ubuntu), cont.

46

Exercise:
SavvyCAN (Ubuntu), cont.

Now we have way to filter and
capture data.

But what does this all mean?

47

Exploring Truck
Hardware
LET’S LEARN ABOUT TRUCKS AND TRUCK PARTS.

48

Interactive Exercise
(ask the experts)

49

Identify and locate the following parts:
1. Wheel Speed Sensor
2. Turbo Charger
3. Intake Air Temperature Probe
4. Engine Control Module
5. Diagnostics Port
6. Transmission Selector
7. Air bag (suspension, not restraint)
8. J560 Connector
9. 5th Wheel
10.Aftertreatment system
11.Air Compressor
12.Alternator

Find the answers to these questions:
1. How much fuel do the tanks hold?
2. What is the size of the tires in revolutions per mile?
3. What is the displacement of the engine?
4. How much does the vehicle weigh?
5. What is the class of the vehicle?
6. How many miles are on the odometer?
7. How many batteries are there on the truck?
8. Why do trucks use air brakes?
9. Who makes the engine?
10.Who makes the brakes
11.What are the VINs for the trucks?
12.What is an intercooler for?

In small groups (2-3), go around to the different trucks on this side of the room and…

Creating Meaning
from Messages
HOW DO WE GET ENGINEERING VALUES FROM J1939 PROTOCOL
DATA UNITS?

50

SAE J1939 is Built on CAN
The main features that define J1939 are:

A standardized meaning for 29-bit arbitration identifiers.

A mechanism for sending messages larger than 8 bytes (up to 1785 bytes) using the transport protocol.

The ability for a controller application to negotiate a unique source address.

51

J1939 Network Layers
Layer Name Standard Description and Purpose

7 Application SAE J1939-71 (Applications)
SAE J1939-73 (Diagnostics)

Defines how to interpret and compose
J1939 messages with engineering values

6 Presentation
Not Used

These services are built into the Data Link Layer.
5 Session

4 Transport

3 Network J1939-31 Clarifies the concept of a gateway between
two separate networks.

2 Data Link J1939-21
Describes how to make a J1939 PDU.
Includes details on sending messages up
to 1785 bytes long.

1 Physical J1939-1X Defined connectors, transceivers, wiring,
pinouts, and signaling.

52

SAE J1939 Standards
Organization
Follows the OSI 7-layer model for naming, e.g.:
◦ J1939-7X are for application layers
◦ J1939-1X are for physical layers

The standard collection adds much more
definition to the CAN communications

Includes additional “Layers”
◦ J1939-8X Network Management
◦ J1939-9X Network Security

J1939 is large and not free

J1939 Accommodates Extensions
◦ PGN 0xEF00 is Proprietary A
◦ PGN 0xFFXX is Proprietary B
◦ PGN 0xDA00 is ISO-15765 (UDS)

A Digital Annex (J1939DA) has the applications
defined in an Excel spreadsheet

53

Recommendation:
• Acquire the Digital Annex first.
• Read J1939-21 for details on the PDU https://www.sae.org/publications/collections/content/j1939_dl/

https://www.sae.org/publications/collections/content/j1939_dl/

Data Decoding and Encoding:
Meaning for Bits and Bytes
Common data sizes
◦ Bit Mapped, like Switch States, (2-bits)
◦ Single Byte Data (8-bits)
◦ 2-byte Data (16 bits)
◦ 4-byte Data (32 bits)
◦ ASCII data (variable)

Exceptions:
◦ Field data, engine maps
◦ Suspect Parameter Numbers (19 bits)
◦ Failure Mode Indicators (5 bits)
◦ Others…

Scale, Limits, Offsets, Transfer (SLOTs)

54

Identifier SLOT Name SLOT Type Scaling Range Offset Length
1 SAEpr11 Pressure 5 kPa/bit 0 to 1,250 kPa 0 1 byte
2 SAEpr13 Pressure 8 kPa/bit 0 to 2,000 kPa 0 1 byte
3 SAEtm11 Time 1 h/bit 0 to 250 h 0 1 byte
4 SAEtm10 Time 1 h/bit -125 to 125 h -125 h 1 byte
5 SAEtm12 Time 1 h/bit -32,127 to 32,128 h -32,127 h 2 bytes
6 SAEtm06 Time 1 s/bit 0 to 4,211,081,215 s 0 4 bytes
7 SAEad01 Angle/Direction 0.0000001 deg/bit -210 to 211.1081215 deg -210 deg 4 bytes
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Bit Transmission Order
Transmission Order: The order in which bits are transmitted over the J1939 Link.
◦ Data is transmitted in increasing byte order (Byte 1 first, Byte 8 last)
◦ Bits within the byte are transmitted in decreasing order (Bit 8 first, Bit 1 last)

Bit Placement: The location within the byte of the start point of the data
◦ J1939 uses a convention of Byte.Bit.
◦ Example from PGN 65265 Cruise Control/Vehicle Speed

55

SPN Location Length Suspect Parameter

967 8.1 2 bits Engine Idle Increment Switch

968 8.3 2 bits Engine Idle Decrement Switch

966 8.5 2 bits Engine Test Mode Switch

1237 8.7 2 bits Engine Shutdown Override Switch

MSB – Most Significant Byte
MSb – Most Significant Bit

MSb Byte 8 LSb

8 7 6 5 4 3 2 1

1237 966 968 967

Time

Types of J1939 Messages

Broadcast
◦ Messages sent for any controller application (CA) to use
◦ CAN Arbitration ID specifies a source address (SA) in the last 8 bits of the ID
◦ Implicitly defined the destination address as 255 (Global)

Point-to-Point
◦ One controller application sends a message to another
◦ CAN Arbitration ID specifies a source address (SA) in the last 8 bits of the ID
◦ A destination address (DA) is in bits 9-16 of the CAN ID.

56

How do some messages implicitly set the
destination address to 255?

J1939 Protocol Data Unit
A J1939 message has all the elements in the protocol data unit (PDU)
◦ 3-bit Priority
◦ 1-bit Extended Data Page (EDP)
◦ 1-bit Data Page (DP)
◦ 8-bit PDU Format (PF)
◦ 8-bit PDU Specific (PS)
◦ 8-bit Source Address (SA)
◦ Data Field up to 1785 bytes

57

29-bit Extended CAN ID

Priority
E
D
P

D
P PDU Format PDU

Specific
Source
Address Data (0 to 1785 bytes)

J1939 driver software
converts CAN

message(s) into a PDU.

PDU 2 Format Messages
The PDU format #2 is for broadcast messages
◦ EDP, DP, PF and PS create the Parameter Group Number (PGN)
◦ PS becomes the group extension (GE)
◦ PF value must be greater than or equal to 240 (0xF0)
◦ Destination address is implied to be 255 (0xFF)

Parameter Groups Numbers are 18 bits.
◦ Most applications on a truck set the EDP and DP to zero
◦ Parameter Groups collect similar data for the PDU data field
◦ PDU 2 messages have a hex values where the leading nibble is F
Examples:
◦ PGN 65265 (0xFEF1) is for Cruise Control and Vehicle Speed
◦ PGN 61444 (0xF004) for the Electronic Engine Controller 1 group

58

18-bit PGN

PDU 1 Format Messages

The PDU format #1 is for point-to-point messages
◦ EDP, DP, PF and 00 create the Parameter Group Number (PGN)
◦ PS becomes the destination address (DA)

Parameter Group Numbers (PGNs) are still 18-bits,
but the last 8 bits are set to zero.

Source and Destination are explicit

PGN values in hex do not have 0xF as the
first nibble.

59

10-bits from PF 0x00

18-bit PGN
Destination

Address

Processing CAN IDs

1. Read the CAN ID as a 32-bit integer

2. Separate the ID into the PDU elements
using bit masking and bit shifting

3. Determine if it is a PDU1 or PDU2
message based on the value of PF

1. If PDU1, PS is the Destination Address
2. If PDU2, PS is the Group Extension, set

Destination Address to 0xFF

60

PRIORITY_MASK = 0x1C000000
EDP_MASK = 0x02000000
DP_MASK = 0x01000000
PF_MASK = 0x00FF0000
PS_MASK = 0x0000FF00
SA_MASK = 0x000000FF
PDU1_PGN_MASK = 0x03FF0000
PDU2_PGN_MASK = 0x03FFFF00

Bit Masking and Shifting

61

ID Hex Nibbles 0 C F 0 0 4 0 0
ID Binary 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

PGN Mask Hex 0 3 F F F F 0 0

Mask Binary 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

AND Result 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Shift right 8 bits 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0

Hex after shift 0 0 F 0 0 4

0x00F004 = 61444 dec

Example: Determine the PGN from the CAN Frame Capture

Python Based Parsing
def get_j1939_from_id(can_id):

priority = (PRIORITY_MASK & can_id) >> 26
edp = (EDP_MASK & can_id) >> 25
dp = (DP_MASK & can_id) >> 24
PF = (can_id & PF_MASK) >> 16
PS = (can_id & PS_MASK) >> 8
SA = (can_id & SA_MASK)
if PF >= 0xF0: #240

DA = 255
PGN = (can_id & PDU2_PGN_MASK) >> 8

else:
DA = PS
PGN = (can_id & PDU1_PGN_MASK) >> 8

return priority,PGN,DA,SA

62

PRIORITY_MASK = 0x1C000000
EDP_MASK = 0x02000000
DP_MASK = 0x01000000
PF_MASK = 0x00FF0000
PS_MASK = 0x0000FF00
SA_MASK = 0x000000FF
PDU1_PGN_MASK = 0x03FF0000
PDU2_PGN_MASK = 0x03FFFF00

EDP: Extended Data Page
DP: Data Page
PF: PDU Format
PS: PDU Specific
PDU: Protocol Data Unit
PGN: Parameter Group Number
DA: Destination Address
SA: Source Address

Decoding Example:
Accelerator Pedal Low Idle Switch
Given the following CAN message (hex):
0CF00300 [8] D0 5A 25 FF FF 0F A0 81

Break the CAN ID into J1939 values
◦ 0x0C is priority 3
◦ F004 is PDU2 format

◦ PGN is 0xF003 = 61443, Electronic Engine Control 2
◦ Destination Address is 0xFF (implied)

◦ Source address is 0x00 = 0, Engine #1

Determine some Suspect Parameters in the data
◦ 558: Accelerator Pedal 1 Low Idle Switch
◦ 559: Accelerator Pedal 1 Kickdown Switch
◦ 1437: Road Speed Limit Status
◦ 2970: Accelerator Pedal 2 Low Idle Switch
◦ 91: Accelerator Pedal Position 1
◦ 92: Engine Percent Load At Current Speed
◦ 974: Remote Accelerator Pedal Position
◦ 29: Accelerator Pedal Position 2
◦ 2979: Vehicle Acceleration Rate Limit Status
◦ 3357: Actual Maximum Available Engine % Torque
◦ 5398: Estimated Pumping – Percent Torque

63

Byte Position Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Hex Values 0xD0 0x5A 0x25 0xFF 0xFF 0x0F 0xA0 0x81
Binary 0b 1101 0000
SPNs 2970 1437 559 558 91 92 974 29 2979
Engineering N/A On Off Off N/A N/A

Bit 1Bit 8 Bit Encoding for SPN 558
00 - Accelerator pedal 1 not in low idle condition
01 - Accelerator pedal 1 in low idle condition
10 - Error
11 - Not available

Decoding Example:
Accelerator Pedal Position
Given the following CAN message (hex):
0CF00300 [8] D0 5A 25 FF FF 0F A0 81

1. Break the CAN ID into J1939 values
a) 0x0C is priority 3
b) F003 is PDU2 format

i. PGN is 0xF003 = 61443, Electronic Engine Control 2
ii. Destination Address is 0xFF (implied)

c) Source address is 0x00 = 0, Engine #1

2. Determine some Suspect Parameters in the data
a) 558: Accelerator Pedal 1 Low Idle Switch
b) 559: Accelerator Pedal 1 Kickdown Switch
c) 91: Accelerator Pedal Position 1
d) 92: Engine Percent Load At Current Speed
e) 974: Remote Accelerator Pedal Position
f) 29: Accelerator Pedal Position 2
g) 2979: Vehicle Acceleration Rate Limit Status
h) 3357: Actual Maximum Available Engine % Torque
i) 5398: Estimated Pumping – Percent Torque

64

Byte Position Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Hex Values 0xD0 0x5A 0x25 0xFF 0xFF 0x0F 0xA0 0x81
SPNs 558, 559… 91 92 974 29 2979… 3357 5398
Engineering 90*0.4 = 36% N/A N/A 160*0.4= 64% 129-125=32%

Byte order for Integers
(Endianness)

65

This Photo by Unknown Author is licensed under CC BY-SA-NC

Post office boxes have mail
loaded from the inside and
taken out through the front.

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY-NC

Mailboxes have mail loaded
and removed from the front.

http://www.savethepostoffice.com/thinking-inside-po-box
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.flickr.com/photos/61278305@N00/6313582962/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://pngimg.com/download/43013
https://creativecommons.org/licenses/by-nc/3.0/

Byte order for Integers
(Endianness)

66

This Photo by Unknown Author is licensed under CC BY-SA-NC

Let’s pretend our mailboxes are containers to hold bytes representing integers.

Example: the integer 100,293,486 is 0x05FA5B6E in hex, which is 4 bytes:

0x05 0xFA 0x5B 0x5E

Pretend each byte is a small package. In what order should the postmaster insert the bytes into the
mailbox so they are in order when the customer extracts them?

This Photo by Unknown Author is licensed under CC BY-NC

MSB first LSB first

Most Significant
Byte

Least Significant
Byte

http://www.savethepostoffice.com/thinking-inside-po-box
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://pngimg.com/download/43013
https://creativecommons.org/licenses/by-nc/3.0/

Byte order for Integers
(Endianness)
SAE J1939 encodes multi-byte integers in the Little Endian format.

This give the appearance the bytes are reversed and need to be swapped to interpret

Intel format = Little Endian = Least Significant Byte first

Motorola format = Big Endian = Most Significant Byte first (as we typically read and write)

67

Byte Length Decimal Hex Big Endian Little Endian (J1939)

1 241 F1 0xF1 0xF1

2 743 2E7 0x02 0xE7 0xE7 0x02

2 25 19 0x00 0x19 0x19 0x00

4 1,890,056,399 70A7F8CF 0x70 0xA7 0xF8 0xCF 0xCF 0xF8 0xA7 0x70

Endianness
doesn’t affect

single byte
integers.

Decoding Example:
Engine Speed (RPM)
Given the following CAN message (hex):
0CF00400 [8] 31 9D 9D A2 38 00 0F 9D

1. Break the CAN ID into J1939 values
a) 0x0C is priority 3
b) F004 is PDU2 format

i. PGN is 0xF004 = 61444, Electronic Engine Control 1
ii. Destination Address is 0xFF (implied)

c) Source address is 0x00 = 0, Engine #1

2. Determine Suspect Parameters in the data
a) 889: Engine Torque Mode
b) 4154: Actual Percent Torque
c) 512: Driver's Demand Engine - Percent Torque
d) 513: Actual Engine Percent Torque
e) 190: Engine Speed
f) 1483: SA of Controlling device
g) 1675: Engine Starter Mode
h) 2432: Engine Demand- Percent Torque

68

Byte Position Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Hex Values 0x31 0x9D 0x9D 0xA2 0x38 0x00 0x0F 0x9D
SPNs 899 4154 512 513 190 1483 1675 Res 2432
Engineering 32% 32% 14,498/8 = 1812.25 N/A 157-125=32%

69

Decoding Example:
Vehicle Miles

70

Determine the Odometer reading from the
J1939 data.

Not all data defined in J1939 is present on
the network.

Strategy:

1. Look up the SPN for distance

2. Search the J1939 Standard for the entry

3. Find the message in a log

4. Decode the logged message

71

72

After Class
Exercise
Signal Interpretation

A candump data log was capture during a
startup seqence for a truck using Linux
SocketCAN. The data comes from 2014
Class 6 truck with a box van where the
operator started the engine, pressed the
accelerator pedal and turned the engine
off. The challenge is to determine the
highest engine speed in RPM base on the
log file.

1. Some other questions for
consideration: How many ECUs are on
the network?

2. What is the vehicle mileage?

3. Did the vehicle's wheels rotate?

73

https://www.engr.colostate.edu/~jdaily/cyber/KWTruck.txt

https://www.engr.colostate.edu/%7Ejdaily/cyber/KWTruck.txt
https://www.engr.colostate.edu/%7Ejdaily/cyber/KWTruck.txt

J1939 Transport
Protocol
HOW CAN WE SEND MESSAGES LARGER THAN 8 BYTES IN A CAN
FRAME?

74

J1939 Transport Protocol
Data more than 8 bytes in length requires multiple CAN frames to send the data.

Two Approaches that follow PDU formats
◦ Request to Send/Clear to Send (RTS/CTS) – point-to-point messaging
◦ Broadcast Announce Message (BAM) – global address
◦ Approach is determined with the first byte of the Connection Management Message

◦ If 32 (0x20), then BAM
◦ If 16 (0x10), then RTS
◦ If 17 (0x11), then CTS

Three Parameter Groups to track
◦ Transport Protocol – Connection Management (TP.CM), PGN 60416 (0xEC00)
◦ Transport Protocol – Data Transfer (TP.DT), PGN 60160 (0xEB00)
◦ PGN of the data being transported

75

Details are in
SAE J1939-21

J1939 Transport Protocol
VIN Example
The following data were on J1939:

CAN ID: CAN Data (in hex)
1CECFF00: 20 12 00 03 FF EC FE 00
1CEBFF00: 01 31 58 4B 59 44 50 39
1CEBFF00: 02 58 37 46 4A 34 36 39
1CEBFF00: 03 30 35 38 2A FF FF FF

Parse the CAN ID into J1939 parameters:
◦ 0x1C000000 -> Priority = 7 (lowest)
◦ 0x00EC0000 -> PGN = 60416 (TP.CM)
◦ 0x00EB0000 -> PGN = 60160 (TP.DT)
◦ 0x0000FF00 -> Destination = 255 (Global)
◦ 0x00000000 -> Source Address = 0 (Engine 1)

76

J1939 Transport Protocol
VIN Example (cont.)
Transport Protocol – Connection Management

1CECFF00: 20 12 00 03 FF EC FE 00
◦ 20 – Control Byte = BAM
◦ 12 00 – Message size (18 bytes)
◦ 03 – Number of packets (3)
◦ EC FE 00 – PGN of message
(0x00FEEC = 65260 Vehicle Identification)

Connection Mode: BAM
◦ Byte 1: Control byte = 32 (0x20), Broadcast

Announce Message (BAM)
◦ Bytes 2,3: Total message size, number of

bytes (Big Endian or reverse byte order)
◦ Byte 4: Total number of packets
◦ Byte 5: Reserved (0xFF)
◦ Bytes 6,7,8: Parameter Group Number of the

packeted message (Big Endian)

Note: The destination on a BAM is often 255
for all the nodes.

77

J1939 Transport Protocol
VIN Example (cont.)
Transport Protocol – Data Transfer

1CEBFF00: 01 31 58 4B 59 44 50 39
1CEBFF00: 02 58 37 46 4A 34 36 39
1CEBFF00: 03 30 35 38 2A FF FF FF
◦ NN – Sequence Number (01 to FF)
◦ Data totaling the number of bytes in TC.CM
◦ FF FF FF – Filler for an 8-byte message

A maximum of 255 messages with 7 bytes each means a
total of 255*7 = 1785 bytes maximum for each J1939
transport protocol message.

78

Decoded value from ASCII:
31 58 4B 59 44 50 39 58 37
46 4A 34 36 39 30 35 38 2A

1 X K Y D P 9 X 7
F J 4 6 9 0 5 8 *

Or 1XKYDP9X7FJ469058

(VIN is usually 17 characters, so the *
is dropped)

1XKYDP9X7FJ469058*

J1939 Request Messages
Many data available from and ECU are by
request only. Examples include:
◦ Engine hours
◦ VIN
◦ Component Information

PGN 59904 (0xEA00) is for a Request
◦ Only 3 bytes long
◦ Data is the PGN being requested
◦ Should only be used 2-3 times per second

Example:
CAN ID CAN DATA

18EA0FF9 EC FE 00
◦ 18 – Priority (6 default)
◦ EA00 – Request PGN (59904)
◦ 0F – Destination Address (Retarder)
◦ F9 – Source Address (249: Off-Board
Diagnostic Tool)

◦ EC FE 00 – PGN 65260: VIN (Reverse
byte order)

Note: this is a point-to-point request to the
retarder from the service tool.

The response may be BAM or RTS/CTS

79

J1939 Transport Protocol
Vulnerabilities
Certain implementations may trust external
values for setting up transport protocols,
which may lead to issues.

1. Request Overloads
2. Connection Exhaustion
3. BAM Block
4. Malicious Clear to Sent
5. Memory Leak

80

https://dx.doi.org/10.14722/vehiclesec.2023.23053
https://www.engr.colostate.edu/~jdaily/presentations/2023%20Transport%
20Protocol%20Vulnerabilities%20on%20SAE%20J1939%20Networks.pdf

https://dx.doi.org/10.14722/vehiclesec.2023.23053
https://www.engr.colostate.edu/%7Ejdaily/presentations/2023%20Transport%20Protocol%20Vulnerabilities%20on%20SAE%20J1939%20Networks.pdf
https://www.engr.colostate.edu/%7Ejdaily/presentations/2023%20Transport%20Protocol%20Vulnerabilities%20on%20SAE%20J1939%20Networks.pdf

J1939 Address
Claim
HOW DOES A NETWORK KEEP TRACK OF THE SOURCE AND
DESTINATION ADDRESSES IF IT CHANGES?

81

J1939 Address Claim
Each controller application (node) on the
network should have its own source address.

Some ECUs have multiple controller
applications.
◦ SA 0x00: Engine #1
◦ SA 0x0F: Engine Retarder

Address Claims happen
◦ On Boot
◦ When requested
◦ In response to other claims for the same address

Address Claim Parameter Group Number
◦ 60928 (0xEE00)
◦ Mostly uses the Global destination address (0xFF)
◦ Source address is the address being claimed

Transmission Address Claim example:

18EEFF03: 64 00 40 00 00 03 03 10
◦ 18 – Priority 6 (default)
◦ EE – PGN 60928 = Address Claimed
◦ FF – Global Destination Address
◦ 03 – Source address for Transmission #1
◦ 64 00 40 00 00 03 03 10 - NAME Field

82

How Address Claiming
Works

83

See SAE J1939-81
Network
Management

Address NAME Field

84

• From SAE J1939-81, the following NAME field is 64 Bits (8 bytes) long.

• Value is translated with little endian format (Intel), so the least significant byte is first.

• Example 1: Caterpillar C15 with ADEM4 ECU
can1 18EEFF00 [8] D0 6B 01 01 00 00 00 80

• Example 2: Detroit Diesel CPC3Evo
can1 18EEFF00 [8] 00 00 C0 01 00 00 00 00

• Additional Examples

Arbitrary
Address
Capable

Industry
Group

Vehicle
System
Instance

Vehicle
System

Reserved Function Function
Instance

ECU
Instance

Manufacturer
Code

Identity
Number

SAE SAE SAE SAE SAE
1 bit 3 bits 4 bits 7 bits 1 bit 8 bits 5 bits 3 bits 11 bits 21 bits

CAN ID has:
• Priority = 6,
• Parameter Group Number = 0xEE00,
• Destination Address = 0xFF (Global),
• Claimed Source Address = 0x00 (Engine #1)

Example 1: Caterpillar
can1 18EEFF00 [8] D0 6B 01 01 00 00 00 80

Byte 8 (0x80) = 0b1000 0000, which means:
◦ it is arbitrary address capable,
◦ the industry group is 0 (global), and
◦ the vehicle system instance is zero.

Byte 5 -7 (00 00 00), which means:
◦ the vehicle system, function, and function instance are all zero,

which is consistent with an engine controller

Byte 4 (0x01), Bits 1-8 = MSB of Mfg Code
Byte 3 (0x01), Bits 8-6 = LSB of Mfg Code
◦ 0b0000 0001 0000 0001 = 0b1000 = 8 (dec)

Byte 3 (0x01), bits 1-5 = MSB of Identity Field
Byte 2 (0x6B) = 2nd byte of identity field
Byte 1 (0xD0) = LSB of identity field
◦ 0b0 0001 0110 1011 1101 0000 = 93,136 (dec)

85

Example 2: Detroit Diesel
can1 18EEFF00 [8] 00 00 C0 01 00 00 00 00

Byte 8 (0x00) = 0b0000 0000, which means:
◦ it is NOT arbitrary address capable,
◦ the industry group is 0 (global), and
◦ the vehicle system instance is zero.

Byte 5 -7 (00 00 00), which means:
◦ the vehicle system, function, and function instance are all zero,

which is consistent with an engine controller

Byte 4 (0x01), Bits 1-8 = MSB of Mfg Code
Byte 3 (0xC0), Bits 8-6 = LSB of Mfg Code
◦ 0b0000 0001 1100 0000 = 0b1110 = 14 (dec)

Byte 3 (0x01), bits 1-5 = MSB of Identity Field
Byte 2 (0x00) = 2nd byte of identity field
Byte 1 (0x00) = LSB of identity field
◦ 0b0 0000 0000 0000 0000 0000 (likely not used)

86

Example 3: Allison
Transmission
can1 18EEFF03 [8] 64 00 40 00 00 03 03 10

Byte 8 (0x10) = 0b0001 0000, which means:
◦ it is NOT arbitrary address capable,
◦ the industry group is 1 (on-highway), and
◦ the vehicle system instance is zero.

Byte 7 (0x03), the vehicle system is the transmission

Byte 6 (0x03), function is the transmission

Byte 5 (0x00), the function and ECU instance is zero, which
means it’s the first instance.

Byte 4 (0x00), Bits 1-8 = MSB of Mfg Code
Byte 3 (0x40), Bits 8-6 = LSB of Mfg Code
◦ 0b0000 0000 0100 0000 = 0b0010 = 2 (dec)

Bytes 3-1 (0x00064) comprise the identity field

87

Address Claim Attack
Idea: Claim someone else’s address with a higher priority address (All Zeros).

Keep claiming addresses as they are dynamically claimed.

If a system can’t find a claimable address, then it should stop broadcasting (Denial of Service)

The following example shows how to conduct an address claim attack:

https://github.com/SystemsCyber/CyberTruckResources/blob/master/05_J1939/06%20J1939
%20Address%20Claim.ipynb
◦ Note: This runs on Linux Socket CAN
◦ Try it on the CM2350

94

Run these commands in Ubuntu:
git clone https://github.com/SystemsCyber/CyberTruckResources.git
conda activate base
jupyter notebook

https://github.com/SystemsCyber/CyberTruckResources/blob/master/05_J1939/06%20J1939%20Address%20Claim.ipynb
https://github.com/SystemsCyber/CyberTruckResources/blob/master/05_J1939/06%20J1939%20Address%20Claim.ipynb

J1939 Diagnostic
Messages
UNDERSTANDING MESSAGES RELATED TO FAULT CODES

95

J1939-73 Application
Layer - Diagnostics
Defines close to 60 Diagnostic Messages related to
troubleshooting and monitoring components on a
truck.

Defines lamp status
◦ Check Engine Lamp
◦ Malfunction Indicator Lamp MIL

Defines Failure Mode Indicators (FMI)

All trucks use some parts of J1939-73
◦ Diagnostic Message 1

Many parts of J1939-73 are not used
◦ Components use UDS or proprietary messaging
◦ Most concepts are implemented in ECUs in some

fashion

96

Diagnostic Message 1
Example (No Fault Codes)
Broadcast once per second

Diagnostic trouble codes (DTCs) have four
fields that use 32-bits:
◦ Suspect Parameter Number (SPN): 19 bits
◦ Failure Mode Identifier (FMI): 5 bits
◦ Occurrence Count (OC): 7 bits
◦ SPN Conversion Method (CM): 1 bit

PGN for DM1 is 65226 (0xFECA)
◦ Broadcast message with global destination
◦ Source Address tell which controller application is

broadcasting

Unused bytes should be set to 0xFF

18FECA03 03 FF 00 00 00 00 FF FF

18 – Priority (6 default)
FECA – DM1 PGN (65226)
03 – Source Address (Transmission)

03 – Lamp Status (0000 0011)
FF – Lamp Flash Status (1111 1111)
00 00 0 – Suspect Parameter Number
0 – Failure Mode Indicator (FMI)
00 – Conversion and Occurrence Count

97

CM
8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

Diagnostic Trouble Code
Conversion Method and

Occurance Count
Suspect Parameter Number (19 bits) FMI OC

Least Significant Byte of
SPN

Second Byte of SPN
3 most significant bits
for SPN, 5 bits for FMI

Lamp Status
Bytes in DM1

DM1 Byte 1:
◦ Bits 8-7: Malfunction indicator lamp
◦ Bits 6-5: Red stop lamp
◦ Bits 4-3: Amber warning lamp
◦ Bits 2-1: Protect lamp

DM1 Byte 2:
◦ Bits 8-7: Flash malfunction indicator lamp
◦ Bits 6-5: Flash red stop lamp
◦ Bits 4-3: Flash amber warning lamp
◦ Bits 2-1: Flash protect lamp

Lamp status bytes exist only at the beginning of the
DM1 message

Multiple DTCs can be concatenated and broadcast

98

Lamp Status Bits:
00 = Off
01 = On
10 = Error
11 = Not Available (unused)

Emissions Related

Flash Status Bits:
00 = Slow Flash (1/sec)
01 = Fast Flash (2/sec)
10 = Reserved
11 = Unavailable (don’t flash)

Diagnostic Message 1
Ex: Multiple Fault Codes
TRANSPORT PROTOCOL MESSAGES

1CECFF00 20 CA 00 1D FF CA FE 00
1CEBFF00 01 57 FF 9D 00 03 01 FB
1CEBFF00 02 06 0B 32 4A 00 0E 31
…(182 more bytes in 26 frames)…

1CEBFF00 1D 09 01 84 06 09 01 FF

57 FF – Lamp Status
(0101 0111 1111 1111)

J1939 PROTOCOL DATA UNIT

PGN: 0x00FECA = 65226 (DM1)
Dest. Address: 0xFF (Global)
Source Address: 0x00 (Engine #1)

Data: (0x00CA = 202 bytes)

57 FF 9D 00 03 01 FB 06 0B 32 4A
00 0E 31 … 09 01 84 06 09 01

99

Last
Frame

• All 3 lamps are on
• Protect is not used
• No lamps are flashing

Diagnostic Message 1
Ex: Multiple Fault Codes

DTC 1: 9D 00 03 01 DTC 2: FB 06 0B 32

100

57 FF 9D 00 03 01 FB 06 0B 32 4A 00 0E 31 … 09 01 84 06 09 01

Diagnostic Trouble Code

Least Significant
Byte of SPN Second Byte of SPN

3 most significant
bits for SPN, 5 bits

for FMI

Conversion Method
and Occurrence

Count

9D 00 03 01

Suspect Parameter Number (19 bits) FMI CM OC
8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

Reverse Byte order: 0x0009D = 157 3 0 1

Diagnostic Trouble Code

Least Significant
Byte of SPN Second Byte of SPN

3 most significant
bits for SPN, 5 bits

for FMI

Conversion Method
and Occurrence

Count

FB 06 0B 32

Suspect Parameter Number (19 bits) FMI CM OC

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0

Reverse Byte order: 0x006FB = 1787 11 0 50

• SPN = 157 (Engine Fuel 1 Injector Metering Rail 1 Pressure)
• FMI = 3 (Voltage Above Normal, or Shorted to High Source)
• Count = 1

• SPN = 1787 (Engine Torque Limit Request - Maximum Continuos)
• FMI = 11 (Root Cause Not Known)
• Count = 50

Use SAE J1939-73
Appendix A for FMIs

Most diagnostic service tools interpret these codes.

J1939 Diagnostics
Summary

Diagnostic Trouble Codes are defined with
◦ Suspect Parameter Number (i.e. the potential part that may be broken)
◦ Failure Mode Indicator (i.e. the symptom of the broken part)
◦ Occurrence Count (how many times the system sees the indication)

J1939-73 also discusses
◦ Firmware updates
◦ Memory access
◦ Emissions Compliance
◦ Freeze Frame Data
◦ Data Security

Many vehicles implement only
a small portion of J1939-73

101

RP1210
Programming
USING WINDOWS DIAGNOSTIC SERVICE TOOLS TO CONNECT TO THE NET WORK

(ONE PERSON PER TABLE SHOULD BOOT THEIR COMPUTER TO WINDOWS NOW)

102

RP1210 Vehicle
Diagnostics Adapters
Truck owners want only one hardware device to work with all their ECUs and diagnostics software

American Trucking Association (ATA) and their Technology Maintenance Council (TMC) published
Recommended Practice (RP) number 1210 to define a Windows API for vehicle diagnostic
adapters (VDAs)

103

This Photo by Unknown Author is
licensed under CC BY

Service Computer

USB
Bluetooth
Wifi

J1939

Nexiq USB Link 2

DG DPA 5 Pro

Noregon DLA +

https://blog.scssoft.com/2020/11/hard-truck-tribute.html
https://creativecommons.org/licenses/by/3.0/

Setup the ECM
Kit for RP1210
Connect CAN0 to the Diagnostic
Port.

Be sure to connect the
terminating resistors.

Either the PeakCAN Adapter or the
USB2CAN devices will work.

104

In Class
Exercise:
Cummins
PowerSpec
Open Cummins PowerSpec

Connect to the Engine Controller

Read the Dataplate and determine
the VIN

Look for the VIN in the J1939
traffic

105

PowerSpec Dataplate

106

ASCII for * is 0x2A

Writing RP1210 Applications
– SimpleRP1210
SimpleRP1210 written in C and compiled with
Visual Studio Tools

Clone this repository in Windows:

https://github.com/SystemsCyber/ShimDLL

Examine
◦ simpleRP1210.c
◦ simpleRP1210.h

Follow the instructions to compile the C code
◦ From the developer command prompt:
cl.exe simpleRP1210.c

◦ Execute:
simpleRP1210.exe CIL7R32.dll 1

107

https://github.com/SystemsCyber/ShimDLL

Exercise: Run
SimpleRP1210.exe

108

simpleRP1210.exe CIL7R32.dll 1

Function Prototypes
Function Name Description

RP1210_ClientConnect (…) Load the routines for a particular protocol on the correct channel

RP1210_SendCommand(…) Send command to change the behavior or property of the VDA

RP1210_SendMessage (…) Send a message through the VDA to the vehicle network

RP1210_ReadMessage (…) Read a message from the vehicle network

RP1210_ClientDisconnect (…) Disconnect the client and close the driver

The message structure depends on the type of client
◦ J1939
◦ CAN
◦ J1708

109

https://www.atabusinesssolutions.com/Shopping/Product/viewproduct/2675472/TMC%20Individual%20RPs

RP1210 Log files are
helpful to understand

diagnostic communication.

https://www.atabusinesssolutions.com/Shopping/Product/viewproduct/2675472/TMC%20Individual%20RPs

RP1210 Log File Example
DG Technologies DPA5

FT:0011,AT:0030 XX,CC,00,02,001,J1939:Baud=Auto,0,0,0
Exe Name: C:\PROGRAM FILES (X86)\CUMMINS\POWERSPEC5\POWERSPEC.EXE :Thu Jan 13 13:05:10 2022
FT:0000,AT:0000 02,SC,00,17,45,35,30,30,30,30,30,00,00,00,00,00,00,00,00,00,00,00
FT:0000,AT:0000 02,SC,00,1,18,00
FT:0001,AT:0001 02,SC,00,7,4,0d,00,ef,00,ff,00,fa
FT:0000,AT:0000 02,SC,00,1,18,01
FT:0252,AT:0252 02,SC,00,10,19,fa,d6,eb,56,01,00,81,00,00,00
FT:0000,AT:0000 02,SM,00,15,0,0,00,ef,00,06,fa,00,81,02,01,01,ff,01,ff,00,00,
FT:0265,AT:0013 02,RM,19,4104,1,00,01,9b,da,00,ef,00,00,00,fa,81,01,02,00,01,70,01,05,30,
FT:0000,AT:0000 02,SM,00,15,0,0,00,ef,00,06,fa,00,81,00,03,00,00,01,01,00,00,
FT:0027,AT:0027 02,RM,23,4104,1,00,01,9b,f3,00,ef,00,00,00,fa,81,00,03,01,01,01,02,01,00,7f,04,28,31,

CC – Client Connect
SC – Send Command

110

SM - Send Message
RM – Read Message

RP1210 Client Connect
FT:0011,AT:0030 XX,CC,00,02,001,J1939:Baud=Auto,0,0,0
Exe Name: C:\PROGRAM FILES (X86)\CUMMINS\POWERSPEC5\POWERSPEC.EXE :Thu Jan 13 13:05:10 2022

CC – Client Connect
00 – Legacy Window Handle (always 0x00)
02 – Returned Client ID (Used by all the other commands)
001 – Device ID (Selected from the RP1210 INI files for the device connected)
J1939:Baud=Auto – Protocol String
0 – TX Buffer Size (Set to zero to accept default of 8k)
0 – RX Buffer Size (Set to zero to accept default of 8k)
0 – IsAppPacketizingIncomingMsg (set to zero to have the VDA do J1939 transport protocol)

111

RP1210 Send Command
FT:0001,AT:0001 02,SC,00,7,4,0d,00,ef,00,ff,00,fa

02 – Connected Client (Result from Client Connect)
SC – Send Command
00 – Return value from Command (00 = Success for Command 4)
4 – Command Number (4 = Set Message Filtering for J1939)
7 – Message Size for Command
0d,00,ef,00,ff,00,fa – Command message for setting J1939 Filter

112

Filter
Flag PGN to Filter Priority Source

Address
Destination

Address

Each command has
different meanings for

the parameters.

See the RP1210
Document for details.

RP1210 Send Message
FT:0000,AT:0000 02,SM,00,15,0,0,00,ef,00,06,fa,00,81,02,01,01,ff,01,ff,00,00,

02 – Connected Client (Result from Client Connect)
SM - Send Message
00 – Return value (00 = Successfully sent message)
15 – Message Size including identifiers and messages
0 – Legacy Notify Status on Transmit (always set to zero)
0 – Legacy Block on Send (Flag ignored and aways set to zero)
00,ef,00,06,fa,00,81,02,01,01,ff,01,ff,00,00 – Message to be sent (in hex)

113

PGN of
Message Priority

Source
Address

Destination
Address

Message
Payload

Note: In this case, the
message is 9 bytes, so the
VDA will encapsulate the
message in the J1939
Transport Protocol.

RP1210 Read Message
FT:0265,AT:0013 02,RM,19,4104,1,00,01,9b,da,00,ef,00,00,00,fa,81,01,02,00,01,70,01,05,30,

02 – Connected Client (Result from Client Connect)
RM – Read Message
19 – Message size in bytes
4104 – Buffer Size
1 – Block on Read (1 – BLOCKING IO)
00,01,9b,da,00,ef,00,00,00,fa,81,01,02,00,01,70,01,05,30 - Received Message

114

PGN of
Message

How/
Priority

(RTS/CTS)

Source
Address

Destination
Address

Message
Payload

Timestamp
from VDA

Note: In this case, the
message is 9 bytes, so the
CAN traffic will show the
message in the J1939
Transport Protocol. The
VDA provides the result.

Proprietary Diagnostic
Protocols
Network traffic from Cummins Insite shows
diagnostics over Proprietary A messages:
PGN 61184 (0xEF00)

Some J1939 fields are duplicated in
proprietary protocols

Data may be richer compared to J1939
◦ Commands for service routines
◦ Calibration modifications

Navistar protocols extensively use
Proprietary B messages (PGN =0xFFXX)

115

RP1210 Summary
The RP1210 system has been around since the 1990s

Vendors provide their details using the INI files; Applications parse the INI files

Technicians select their drivers based on the parsed INI files

Multiple drivers and VDAs can co-exist on computers

Function prototypes are common across all VDAs; Logging capabilities are different

RP1210 makes J1939 transport protocols transparent; CAN logs may look different

There are many more details in the actual RP1210 document

A minimal console program written with RP1210 function calls is called simpleRP1210
https://github.com/SystemsCyber/ShimDLL

116

https://github.com/SystemsCyber/ShimDLL

Cybersecurity
Considerations for
J1939
WHAT CAN DO WRONG IF A HACKER GETS ACCESS TO THE
NETWORK?

117

Denial Of Service

118

Normal J1939

Flooded J1939

Denial of Service

By repeating high priority messages (ID = 0), no other legitimate message can get access to the network.

This will shut down communications and potentially stall a truck.

There are no native protections against this in J1939; avoid connecting unknown new devices to J1939.

119

Spoofing Messages and
Commands

120

Normal J1939 Spoofed J1939

Spoofing Messages and
Commands
Two messages with the same IDs will be interpreted the same way
◦ One message is legitimate (right)
◦ The other is spoofed (left)

121

The network doesn’t
know which message

is legitimate

122

Machine-in-the-Middle
(MITM) Attacks

J1939 and CAN are trusting; there is no built-in
authentication for CAN frames.

MITM devices can manipulate network traffic.

Use Arduino to modify the code at
https://github.com/SystemsCyber/CAN-
Adapter/tree/main/ArduinoMITM
and change messages that show up in
simpleRP1210.exe.

123

Insert Teensy 4.1 CAN
Adapter Here

https://github.com/SystemsCyber/CAN-Adapter/tree/main/ArduinoMITM
https://github.com/SystemsCyber/CAN-Adapter/tree/main/ArduinoMITM

Exercise:
MITM Programing

This will change

F1 FE 00 06 00 FF FF FF FE FF FF FF FF FF

to

F1 FE 00 06 00 FF 00 11 22 33 44 55 66 77

in the simpleRP1210.exe output.

124

Summary
The need for in-vehicle communication using CAN and SAE J1939

Connecting to J1939 Networks

Classify the different types of communication over J1939

Interpret J1939 network traffic using the SAE Standard

Recognize SAE J1939 Transport Protocols for larger messages

Understand J1939 Diagnostic Messages

Introduction to J1939 Address Claiming

Demonstration of RP1210 functionality for diagnostics

Showed examples of Unified Diagnostic Services (UDS) over J1939

Realize J1939 is inherently an open (and potentially insecure) read-write bus

125

BACKUP Slides

126

Unified Diagnostic
Services over J1939
UDS COMMUNICATIONS AS DEFINED IN ISO 15765

127

Unified Diagnostic
Services (UDS) over CAN
UDS is used by many truck component makers for
diagnostics and maintenance actions
◦ Bendix Brake Controllers
◦ Detroit Diesel Electronic Controllers
◦ Mack and Volvo Diagnostics
◦ Many others

Message meaning is defined in ISO 14229

J1939 uses PGN 55808 (0xDA00) for UDS
◦ PDU1 format (Point-to-point) uses Destination

Address

UDS has its own transport protocol (ISO-TP)
◦ 4096 bytes maximum per message.

128

UDS Example:
Establish UDS Session
MESSAGE FROM OFF-BOARD TOOL (SA: F1)

18DA00F1 02 10 03 00 00 00 00 00

18 - Priority 6
DA – PF for ISO 15765 (PGN = 0xDA00)
00 – Dest. Address (0x00 = Engine #1)
F1 – Source Address (0xF1 = Service Tool)

0 – Single Frame Message
2 – Message Size (2 bytes)
10 – Service ID (0x10 Establish Session)
03 – Session Type (0x03 = Extended)

MESSAGE FROM ENGINE #1 (SA: 00)

18DAF100 06 50 03 00 14 00 C8 01

0 – Single Frame Message
6 – Message Size (6 bytes)
50 – Service ID Response for Session
03 – Session Type (0x03 = Extended)
00 14 00 C8 – Session Timing Parameters

129

CAN ID

Service Identifier (SID) Responses
always add 0x40 to the Request SID.
Example: 0x10 - Request

0x50 - Response

UDS Example:
Seed-Key Exchange
MESSAGE FROM OFF-BOARD TOOL (SA: F1)

18DA00F1 02 27 09 00 00 00 00 00

18DA00F1 04 27 0A B1 27 00 00 00

0 – Single Frame Message
2 – Message size (2 bytes)
27 – SID for Security Exchange
09 – Request Seed

0 – Single Frame Message
4 – Message size (4 bytes)
27 – SID for Security Exchange
0A – Parameter for Key
B1 27 – Value of Key

MESSAGE FROM ENGINE #1 (SA: 00)

18DAF100 04 67 09 EC 65 21 05 03

18DAF100 02 67 0A EC 65 21 05 03

0 – Single Frame Message
4 – Message size (4 bytes)
67 – SID for Security Exchange Response
09 – Parameter for Seed
EC 65 – Value of Seed

0 – Single Frame Message
2 – Message size (2 bytes)
67 – SID for Security Exchange Response
0A – Key Acknowledge (Accepted)

130

Repeated Buffer
Contents Not Used

UDS Example:
Read Data By Identifier
MESSAGE FROM OFF-BOARD TOOL (SA: F1)

18DA00F1 03 22 F1 51 00 00 00 00

18DA00F1 30 08 00 00 00 00 00 00

0 – Single Frame Message
3 – Message size (3 bytes)
22 – SID (0x22 = Read Data By Identifier)
F1 51 – Data Identifier (Proprietary)

30 – Flow Control Frame
08 – Send up to 8 more frames

MESSAGE FROM ENGINE #1 (SA: 00)

18DAF100 10 09 62 F1 51 11 29 00

18DAF100 21 11 2A 00 51 11 29 00

1 – First Frame of Message
0 09 – Message Size (up to 4096)
62 – SID Response (0x22 + 0x40)
F1 51 – Data Identifier of Response
11 29 00 – First 3 bytes of data

2 – Consecutive Frame
1 – Frame Sequence Number
11 2A 00 – Last 3 Bytes of Data

131

Same
memory

Example UDS
Session for
Brake Controls

• A session is established for brake
controller diagnostics

• Students commanded a brake
chuff test

• All communications went over UDS

• The brake controller trusts the UDS
commands

132

Resources for Unified
Diagnostic Services
UDS, like J1939, is extensive and has many reference documents

Most UDS communications have proprietary meaning

UDS is also used in passenger cars (with different CAN IDs)

UDS uses a server and client model
◦ Server: on-board ECU
◦ Client: off-board diagnostic tool

Links for additional information:
◦ https://en.wikipedia.org/wiki/ISO_15765-2
◦ https://www.sae.org/publications/books/content/r-474/
◦ https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

133

https://en.wikipedia.org/wiki/ISO_15765-2
https://www.sae.org/publications/books/content/r-474/
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

	Introduction to SAE J1939�A primer for in-vehicle networking
	Jeremy S. Daily, Ph.D., P.E.
	Agenda
	Training Goals
	Truck Systems
	Truck Engines
	Engine Control Module (ECM)
	Data from an ECM
	Electronic Brake Controllers
	In-Vehicle Networking
	Controller Area Network (CAN) in Trucks
	Diagnostic Connector Pinouts – SAE J1939
	SAE J1708/J1587
	Some History:�J1708 and J1587
	J1708 Message Example
	J1587 Message Decoding Example
	Power Line Carrier�SAE J2497
	Why SAE J2497 is important
	Back to J1939
	Diagnostic Connector Pinouts – PACCAR
	Diagnostic Connector Pinouts – Mack/Volvo
	RP1226 Accessory Connector Pinouts
	Diagnostic Connector Pinouts – Key Point
	In Class Exercise:�Reading Schematics
	SOLUTIONS��In Class Exercise:�Reading Schematics
	Bill of Materials to Build a J1939 Diagnostic Connector
	After Class Exercise
	Connecting to the CAN Bus
	Controller Area Network
	CAN Signaling: Measurement Example
	CAN Signaling:�Single Frame
	CAN Measurements Observations
	After Class Exercise
	Collecting CAN Data
	CAN Enabled�Embedded �Linux Hardware
	BeagleBone Black with Heavy Truck Cape
	Raspberry Pi with CAN Hat
	CAN Adapters for Linux
	Exercise: Connect the CAN Adapters for Linux
	Exercise: Connect with SocketCAN on Linux
	Connecting to a Truck �and Reading Data
	Exercise:�SavvyCAN (Ubuntu)
	Exercise:�SavvyCAN (Ubuntu), cont.
	Exercise:�SavvyCAN (Ubuntu), cont.
	Exploring Truck Hardware
	Interactive Exercise �(ask the experts)
	Creating Meaning from Messages
	SAE J1939 is Built on CAN
	J1939 Network Layers
	SAE J1939 Standards Organization
	Data Decoding and Encoding:�Meaning for Bits and Bytes
	Bit Transmission Order
	Types of J1939 Messages
	J1939 Protocol Data Unit
	PDU 2 Format Messages
	PDU 1 Format Messages
	Processing CAN IDs
	Bit Masking and Shifting
	Python Based Parsing
	Decoding Example:�Accelerator Pedal Low Idle Switch
	Decoding Example:�Accelerator Pedal Position
	Byte order for Integers (Endianness)
	Byte order for Integers (Endianness)
	Byte order for Integers (Endianness)
	Decoding Example:�Engine Speed (RPM)
	Slide Number 69
	Decoding Example:�Vehicle Miles
	Slide Number 71
	Slide Number 72
	After Class Exercise
	J1939 Transport Protocol
	J1939 Transport Protocol
	J1939 Transport Protocol VIN Example
	J1939 Transport Protocol VIN Example (cont.)
	J1939 Transport Protocol VIN Example (cont.)
	J1939 Request Messages
	J1939 Transport Protocol Vulnerabilities
	J1939 Address Claim
	J1939 Address Claim
	How Address Claiming Works
	Address NAME Field
	Example 1: Caterpillar
	Example 2: Detroit Diesel
	Example 3: Allison Transmission
	Address Claim Attack
	J1939 Diagnostic Messages
	J1939-73 Application Layer - Diagnostics
	Diagnostic Message 1 Example (No Fault Codes)
	Lamp Status �Bytes in DM1
	Diagnostic Message 1�Ex: Multiple Fault Codes
	Diagnostic Message 1�Ex: Multiple Fault Codes
	J1939 Diagnostics Summary
	RP1210 Programming
	RP1210 Vehicle Diagnostics Adapters
	Setup the ECM Kit for RP1210
	In Class Exercise: �Cummins PowerSpec
	PowerSpec Dataplate
	Writing RP1210 Applications – SimpleRP1210
	Exercise: Run SimpleRP1210.exe
	Function Prototypes
	RP1210 Log File Example�DG Technologies DPA5
	RP1210 Client Connect
	RP1210 Send Command
	RP1210 Send Message
	RP1210 Read Message
	Proprietary Diagnostic Protocols
	RP1210 Summary
	Cybersecurity Considerations for J1939
	Denial Of Service
	Denial of Service
	Spoofing Messages and Commands
	Spoofing Messages and Commands
	Slide Number 122
	Machine-in-the-Middle (MITM) Attacks
	Exercise: �MITM Programing
	Summary
	BACKUP Slides
	Unified Diagnostic Services over J1939
	Unified Diagnostic Services (UDS) over CAN
	UDS Example:�Establish UDS Session
	UDS Example:�Seed-Key Exchange
	UDS Example:�Read Data By Identifier
	Example UDS Session for Brake Controls
	Resources for Unified Diagnostic Services

